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Abstract

Recent advancements in semiconductor fabrication technology have enabled field-

programmable gate arrays (FPGAs) with hundreds of embedded memories. Usually,

these embedded memories can be configured to work with different widths of address

and data buses. In some FPGAs there is also a variety of different types of embedded

memories with different capacities and configuration sets. As a consequence, it is

becoming cumbersome to bind the data memory of an algorithm to these embedded

memories manually. A computer-aided design tool that automates the process of

binding embedded memories can save the engineering time for a design, as well as

explore different alternatives to bind the data memory with the use of less embedded

memories and less amount of peripheral hardware in terms of logic cells of the FPGA.

In this thesis, we first motivate the need for an algorithmic solution to the memory

binding problem in FPGAs and explain the design trade-offs. Then we present an

exact solution for the problem using a branching method to search the solution space

exhaustively. However, due to the large solution space and the plenitude of choices in

each step of the algorithm, the runtime of the algorithm is far from being acceptable

for realistic problems. To manage the runtime, we have developed a fast heuristic

approach. Our experimental results show that the heuristic method can achieve a

suboptimal solution, which for small problem instances is shown to be close to the

optimal in acceptable runtime. Moreover, when compared to manual solutions, be-

sides substantially improving the implementation time, the heuristic can often enable

a more efficient usage of the FPGA logic resources and embedded memories.
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Chapter 1

Introduction

Digital electronics is playing a key role in society. The advancements in digital elec-

tronics have made it more useful and reliable over the past few decades. In fact, the

transition from electromechanical machines to high performance computers with a

fraction of power consumption has enabled us to use digital circuits in a vast variety

of areas in modern life. Small and simple circuits in children’s toys or more complex

designs in cell phones, portable audio players, or laptops are all different examples

of the usage of digital electronics. Their reliable operation and the ability to handle

complex tasks has facilitated their application in economic sectors that require very

high dependability, such as banking or aerospace engineering.

In this chapter we will start with a brief history of digital electronics in section 1.1.

In section 1.2 we will describe the Moore’s law and its different aspects. The section

1.3 will cover different implementation technologies for digital circuits and their pros

and cons. In section 1.4 we will introduce Field Programmable Gate Arrays (FPGAs),

which are the platform used for the research presented in this thesis. Finally, a short

explanation of thesis organization is provided in section 1.5.
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Figure 1.1: NAND and NOR gates designed with switches

1.1 Digital circuits

A digital circuit consists of logic gates and Boolean functions. All of these gates and

functions can be built by switches. An example is presented in figure 1.1. Therefore,

all digital circuits are based on 0-1 logic because a switch can only have 2 states:

“ON” or “OFF”.

The invention of the transistor was the beginning of a new era in electronics. Along

with their ability to act like a current valve, transistors can be designed and configured

to work like electronic switches. Their advantages over mechanical switches (relays)

became evident between 1940 and 1960 [24]. Transistors were consuming significantly

less power and had a much faster response time than mechanical switches and vacuum

tubes. These two important facts were the main motivations for the new branch of

electronics which is the “digital electronics”.

2
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The potential of digital circuits became evident soon thereafter, and advancements

in digital circuit design and logic made them more useful everyday. Digital circuits

started to handle more complex problems. Therefore, the number of transistors in a

single circuit began to increase. The increase in the number of transistors has a direct

effect on the power consumption of the circuit. To handle the power consumption of

complex circuits with lots of transistors and also increase the processing speed of the

circuit, engineers started to build smaller and smaller transistors. Shrinking the size

of transistors has been known as the most effective method to increase the speed and

reduce the power consumption of digital circuits in the physical design phase [24].

Also, it helps designers to embed more transistors in a limited area. The traditional

transistors, which were components with their dimensions in the range of few inches

and three wires attached to them, got phased out by microscopic transistors which

were embedded on layers of silicon called “wafers”, and engineers began to develop

Integrated Circuits (ICs) which were the new generation of electronic circuits. The

decreasing size of the transistors over the past few decades is explained by Moore’s

law in the next section.

1.2 Moore’s law

In 1965, Intel’s co-founder Gordon E. Moore made an observation about the increasing

speed and complexity of digital circuits. His prediction was that the minimum feature

size will continue to decrease at a rate of roughly a factor of two per year [20].

In other words, Moore claims that the number of transistors in an integrated

circuit doubles every year. Figure 1.2 presents the growing number of transistors

in actual digital circuits over the past few decades. This increase in the number of

3
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Figure 1.2: Moore’s law [20]

transistors is only possible by advancements in reducing the feature size to control the

power consumption and area of the chip. Figure 1.3 illustrates the relation between

the Moore’s law and minimum feature size over the past few decades [16].

In conclusion, we can assume that the Moore’s law still holds only because of the

advancements in physical design to reduce the size of transistors. The next section

discusses different technologies to implement a digital circuit and their pros and cons.

4
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Figure 1.3: Moore’s law for minimum feature size [16]
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1.3 Implementation technologies for digital circuits

There are a few methods to implement a digital circuit. Each method has its own

advantages and disadvantages. Therefore, a designer chooses the implementation

technology or even a certain combination of them to meet the specific requirements

of a product. The designer should take a number of parameters into account such as:

• Performance

• Cost

• Design time

• Production volume

Basically, we can divide the implementation technologies into four groups [21]:

• Off-the-shelf packages

• Programmable logic designs

• Standard cell based designs

• full-custom designs

We will try to give a brief explanation for each approach and its limitations.

6
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Figure 1.4: Discrete logic method[19].

1.3.1 Off-the-shelf packages

Many useful and essential logic functions are available in market as standalone ICs.

One of the ways to design a logic circuit is to use these products in your design and

connect them together in a proper way on a printed circuit board (PCB). In this

method we are using individual logic parts in our design, so it is also called “Discrete

logic”. The discrete components in a design can vary from simple logic gates to more

sophisticated elements like micro-controllers and programmable logic devices. Figure

1.4 shows a sample design using discrete logic approach.

Discrete logic designs can be very expensive for high product volumes because of

the numerous parts which should be bought individually, also the cost for PCB and

7
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other peripheral costs increases the product cost. Furthermore, the test process for

this family of designs is relatively time-consuming because of the number of devices.

Also, they are not very reliable because of the connections outside of the chips. We

should add the bulkiness to the disadvantages list of this family of designs.

On the other hand, off-the-shelf packages are flexible for performing partial changes

or replacing faulty parts. Also, discrete logic designs can be very economical in low

product volumes.

1.3.2 Programmable logic designs

This family of designs can be categorized in the semi-custom approaches. The simplest

programmable logic device (PLD) is a read-only memory (ROM). We can place the

truth table of a function in a ROM. The inputs of the function are the address lines

and the contents of the memory are the outputs for each combination of the inputs.

This approach is limited due to the exponential increase in the memory size with

respect to increasing the number of inputs.

A more sophisticated approach to design programmable logic is to use programmable

logic arrays (PLAs) or programmable array logics (PALs). PALs and PLAs are simple

programmable ICs with prefabricated AND-OR or OR-AND logic system. Therefore,

they are suitable to implement product-of-sum (PoS) or sum-of-products (SoP). We

can program the interconnects from input pins to the inputs of the logic in the first

level (ORs in PLAs and ANDs in PLAs). This enables us to create the products in

SoP form or the sums in PoS form. Figure 1.5 shows the structure of a PLA and how

a designer can program its interconnects. PLAs and PALs can also have registers

embedded in them to hold the current state of the circuit and use it in the next clock

8
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I2
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Figure 1.5: Programmable logic array (black dots represent the programmed inter-
connects).

cycle. Therefore, they can be used to implement state machines.

Today, the most sophisticated programmable logic ICs are field programmable

gate arrays (FPGAs). FPGAs have both programmable interconnect network and

programmable logic functions ability. We will discuss them more deeply in section

1.4.

9
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1.3.3 Standard cell based designs

Similar to programmable logic designs, this approach is in the category of semi-custom

designs. However, standard cell based designs are moving toward more integration.

This family of designs consists of rows of standard cells. Each cell performs a fun-

damental logical function such as: NAND, NOR, register, inverter, and many other

more sophisticated functions like single bit adders with different fan-outs. Therefore,

a proper combination of different cells can create any digital circuit. These cells are

designed with certain standards and parameters in order to match with each other in

rows.

To implement a circuit with this approach, the designer should first synthesize the

design using a certain cell library. The next step is to place the cells in the design in a

proper way which minimizes the complexity of routing. Finally, a routing algorithm

should be used to connect the cells in a proper way using different layers of metal.

In this method the masks of the design for different layers are created by com-

puter aided design (CAD) tools, which is more time consuming than the previous

approaches. However, predesigned cells are helpful to reduce the duration of the

design process with the cost of losing a relatively small percentage of performance.

For small product volumes this method can be very expensive due to the cost

of engineering tools and time, and the cost of preparing the masks. However, the

increasing the volume of the product will vanish these costs. The performance of this

method is higher than the previous ones because of the level of integration. Figure

1.6 shows a design with its three rows of standard cells, and the connections among

cells with different metal layers.

10
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Figure 1.6: Connections between three rows of standard cells[2].

11
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1.3.4 Full-custom designs

This method is the most expensive and time consuming method to design a digital

circuit. However, the result has the smallest size and highest performance. Also,

this method is the most economical method for high product volumes because the

reduction in size of each chip offsets the high cost of mask development.

Unlike the standard cell based method, this method does not use predesigned

cells, and the designer should design the physical layers of the design from scratch.

Therefore, the engineering cost of this method is higher than the previous one because

the designer has to deal with the masks of all layers. This extra effort pays back

when it comes to the area of the chip and its performance. By designing all physical

layers from scratch, the designer is now able to use all possible methods to enhance

the performance of the product. Moreover, the product of this method is the most

reliable among all of the digital circuits’ development technologies.

We discussed the four main methods to develop digital circuits and their ad-

vantages and limitations. Figure 1.7 gives a rough idea about the relation between

the cost and product volume for all technologies. Figure 1.8 presents a diagram to

compare chip area versus design time for all technologies. A summary of what we

discussed in this section so far is available in table 1.1.

It is obvious that in many cases an intelligent design can use a number of these

technologies together to take advantage of each one in the best way. Today, many

advanced processors have a programmable part which can be configured to do cer-

tain tasks much faster. Also, many designs are a combination of both standard cell

and full-custom approaches together, and the reason is that in some parts of the

design the performance is critical unlike other parts. Therefore, the designers use

12
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Figure 1.7: Package cost vs. product volume [21]

Table 1.1: Comparison of different task-realization approaches.

Feature Full-custom Standard-cell based Programmable logic Off-the-shelf
package

Performance Fastest Fast Medium slow
Unit cost

High volume Lowest Low Medium Highest
Low volume Highest High Medium Lowest
Development

time Longest Long Medium Short

13
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Figure 1.8: Chip area vs. design time [21]

full-custom technology for those parts, and develop the other parts with cell-based

methods because this method is much faster while giving a reasonable performance.

Another good example for using a combination of technologies in one design is a

modern FPGA. These FPGAs have custom designed multipliers and basic signal pro-

cessing units in them; the reason is that these units are used frequently in digital

designs in FPGAs. Therefore, FPGAs try to provide some of these units to enhance

the performance of the designs running on them.

1.4 FPGAs

As discussed earlier the advantage of FPGAs over other programmable logics is that

they have both programmable logic blocks and programmable interconnects. FPGAs

consist of a large set of basic blocks with the ability to be programmed. Each blocks

usually has a four to six input look-up table (LUT) along with one or two registers

14
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Figure 1.9: FPGA structure[5].

with some peripheral logic. Figure 1.9 shows a FPGA and the position of its logic

blocks and interconnects.

Based on the complexity of the logic blocks in a FPGA we can categorize FPGAs

into two categories:

• Fine grain FPGAs

• Coarse grain FPGAs

The disadvantage of coarse grain FPGAs is that usually designers can not use the

entire embedded logic in each block, so the amount of unused logic increases when

we use this kinds of FPGAs. On the other hand, the complexity of the logic blocks

helps the designers to use less number of blocks for a certain circuit compared to a

fine grain FPGA. It means that coarse grain FPGAs use less interconnect resources

15
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Figure 1.10: 4-input logic block

because of the enhanced ability of each block. Figure 1.10 shows the schematic of a

sample 4-input logic block. For more detailed schematics please refer to [1, 29].

The logic blocks in fine grain FPGAs are designed in such a way that they are

simple enough that a synthesis tool can use most of the embedded logic in each block.

However, the simplicity of the blocks makes the synthesis tool use more of them for a

certain task. Therefore, we will have a pressure on the routing resources to connect

all the used cells together in a proper way.

We can also categorize the FPGAs based on the technology used to program the

interconnects:

• Fuse based FPGAs

• Memory based FPGAs

16
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The advantage of memory based FPGAs is that they can be programmed several

times. However, due to the use of memories they are a bit slower than fuse based

ones. On the other hand, the disadvantage of the fuse based FPGAs is that we only

can program them one time.

Most of modern FPGAs are coarse grain and memory-based. In this case, they

can be programmed several times, and having more complex logic blocks reduces the

amount of required interconnects which increases their performance. Today, FPGAs

have more components embedded in them such as processing units and memories.

Many digital applications use a basic set of arithmetic functions such as multipli-

cation. Many of today’s FPGAs have a set of embedded arithmetic functions such

as multipliers to help the designers. These multipliers have a limited number of bits.

For example in the Stratix II FPGA (manufactured by Altera), each multiplier has

9-bit inputs. However, these multipliers can be chained together to create multipliers

with a higher number of bits.

Embedded memories are important components of FPGAs. Almost all FPGAs

have embedded memories in them. The architecture of the FPGA is designed in such

a way that it has thousands of small embedded memory chunks all over it between

logic blocks and interconnects. These memory parts are usually identical in their

capacity and dimensions. However, some FPGAs, such as Altera’s Statix family,

have more than one type. Each type has a different capacity and available bit widths

for its address and data. For example, the Stratix III has three types of memories

embedded in it.

Memory parts can have several configurations (address and data bus bit width),

and in each configuration they can have different properties such as different number
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Table 1.2: Memory elements in EP3SL340 FPGA from Stratix III family [1].

Feature MLABs M9K Blocks M144K Blocks
Maximum performance 600 MHz 600 MHz 600 MHz

Quantity 6750 1040 48
Configurations 64*8 8K*1 16K*8
(depth*width) 64*9 4K*2 16K*9

64*10 2K*4 8K*16
32*16 1K*8 8K*18
32*18 1K*9 4K*32
32*20 512*16 4K*36

512*18 2K*64
256*32 2K*72
256*36

of ports. Therefore, we can configure each memory block differently. All these types

and configurations are there to make FPGAs more flexible and more usable for a large

spectrum of applications. Table 1.2 shows the types and configurations for embedded

memories of EP3SL340 FPGA from the Stratix III family by Altera.

1.5 Thesis organization

This thesis presents a solution for an emerging problem in CAD tools for FPGAs,

which is the memory management problem. Chapter 2 is provides a literature review

of similar problems tackled in the past. Also, in this chapter we will formulate the

problem we are dealing with in this thesis. Chapter 3 discusses the problem in depth,

and gives a solution to it in some special and common cases. Also, in this chapter we

discuss an acceptable heuristic method to solve the problem.

Chapter 4 contains a case study along with some experimental and analytical

results of the proposed method. Finally, chapter 5 concludes what we discussed in

the thesis and covers the future work and open problems.
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Chapter 2

Literature Review

In the previous chapter we briefly discussed the digital electronics and the rate of the

advancement in this field captured by Moore’s law. We have also introduced different

implementation technologies and their advantages and disadvantages, which make

each of them suitable for a certain family of designs with their specific parameters

and requirements.

In this chapter we will address the problem which we investigate in this thesis.

To better understand our problem we will introduce the general binding problem in

computer aided design (CAD), and its role in behavioral and logic synthesis in section

2.1. Then to create a link between the resource binding and data path of a design,

we will discuss data path and memory organization in digital designs in section 2.2.

The connection between the binding problem and data path organization of a

design is in physical memory binding. Physical memory binding, which is a step in

data memory organization, will be discussed in section 2.3. In section 2.4 we will

discuss the reasons why we cannot use the traditional binding approaches to attack

the problem of physical binding and why this was not an issue in the past. Finally,
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we will formulate the problem, and define the important metrics in section 2.5.

2.1 Binding problem in CAD

The design flow of a digital circuit consists of different layers of abstraction from be-

havioral descriptions to physical descriptions. The binding problem can be discussed

in two different layers of abstraction: architectural-level and logic-level. The binding

problem in the architectural-level, which is a higher-level description, is discussed

first. Later, we will focus on the logic-level binding.

2.1.1 Binding in architectural synthesis

Architectural synthesis is the process of constructing a gate-level description of the

design from a behavioral model, such as data-flow or sequencing graph. Architectural

synthesis consists of two main steps: scheduling and binding.

Scheduling is responsible for the timing of each operation in the design. In other

words, we define exactly when to start each operation in terms of clock cycles. There

are various methods for scheduling, from basic methods such as “as soon as possible”

(ASAP) and “as late as possible” (ALAP) to more sophisticated approaches with

different purposes such as minimizing the runtime or minimizing a certain type of a

required physical resource. Figure 2.1(a) illustrates the flow of a simple design which

consists of 6 multiplications and 5 ALU operations. This design is scheduled with a

sample scheduling algorithm in figure 2.1(b).

Resource binding is the process of assigning operations of the design to the physical

resources. In this mapping we move from an abstract functional description toward
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Figure 2.1: A sample design before and after scheduling[8].

a more feasible physical description. In many cases resource binding is accompanied

with resource sharing, which is a crucial task in hardware design. Resource sharing

is the process of sharing a physical resource between two or more logical operations

which are not concurrent.

Resource sharing has an important role in managing the physical size of a design.

By sharing the same resource between multiple non-concurrent operations in the

design we can reduce the number of physical resources which results in the reduction

of the design area in many cases. The area of a design has a direct effect on its

working frequency and power consumption.

Assuming that we have two types of physical resources (multipliers and ALUs), we

can create the compatibility graphs of each resource type. The compatibility graphs

for this example are presented in figure 2.2. The compatibility graph presents the

information about the operations we can assign to the same physical resource because

each edge in the graph represents a possible sharing of a physical resource between
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Figure 2.2: Compatibility graphs for resource binding[8].

to operations because they are not concurrent.

There exist different resource binding algorithms with different concerns. Figure

2.3 shows a sample binding of our example based on the compatibility graphs of figure

2.2. Apparently, in this example the binding is done with two multipliers and two

ALUs. It is apparent that we could do the binding with only one resource of each

type. However, it would make the design slower in terms of latency because we had

to stall some operations until the required resource is available.

Besides binding logical operations, register binding is an important part of each

design which influences the overall architecture and performance of the design. There

are many approaches for register binding, each of them working on different parame-

ters of the design. A helpful tutorial to all of the steps discussed above can be found

in [8].
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Figure 2.3: A sample binding of our example[8].
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Figure 2.4: Different binding approaches[8].

2.1.2 Binding in logic synthesis

The logical-level problem of binding is library binding, which is often referred to as

“technology mapping”. The difference between the architectural-level binding and

library binding is that in architectural-level binding we assign each logical operation

to a gate. However, in library binding most of the physical resources in the library

are more complex than a single logical gate. Moreover, the elements of the library

have some other parameters beside their structure which are important in the design,

such as area and delay. Figure 2.4 shows the difference between the basic binding

problem and the practical library binding.

Library binding is important in standard-cell and FPGA based circuit design

because it provides an interface to the physical implementation. Moreover, library

binding provides the means for retargeting logic design to different implementation
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technologies.

A library contains a set of physical resources in different forms with different

parameters. Therefore, the binding algorithm should use these parameters to do the

binding process with respect to some objectives, such as area, delay, or testability of

the design.

The practical approaches to library binding can be classified into two major groups

[8]:

• Heuristic algorithms

• Rule based approaches

The heuristic approach to solve the library binding problem is based on its likeli-

ness to code generation in compilers. In both cases we deal with a matching problem,

and the choice of optimal matches. The proposed methods to solve the matching

problems can be categorized into two major groups:

• Boolean approaches

• Structural approaches

Both of these approaches have been used in the algorithmic library binding. The

Boolean method is explained in depth in [3, 30]. For more information about the

structural methods please refer to [8].

The rule based approaches for binding are usually used as a complement to algo-

rithmic binding. The basic idea of this method is to refine the circuit step by step.
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In other words, these refinements are some local changes to the circuit which do not

change the circuit behavior, and just replace an equivalent sub-circuit. Moreover,

these rules can have priorities over each other [7, 4, 6].

2.2 Data memory organization

So far we have only discussed the logical functions in a design, which define the

control path. In the following section we will focus on the complementary part of

digital circuits, which is the data path. The flow of the data in the design is through

different functional units, registers and memory units. Therefore, the arrangement of

these units and their contents is an important part of the design.

There are several methods for memory architecture, and each method has its own

properties and usage. There is a lot of research done in this field, and a proper

summary of all different approaches for memory organization can be found in [23, 15,

13].

All these methods focus on different ways to access data from physical memories

with minimum cost. They try to manage the storage of the data based on the way the

design accesses them with a high level vision. The bottom line of all these approaches

is to keep the data which is more frequently accessed within the algorithm closer to

the processor and in the memory units with lower access cost. Figure 2.5 shows the

different memories in the addressable memory space of a Central Processing Unit

(CPU) with different access-times.

In other words, the focus of this area of research is to decide which parts of data

to keep in on-chip memories, and how to cache data to reduce cache misses. The

proposed approaches in this field perform a study on the algorithm behavior in its
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Figure 2.5: Memory levels of a sample design[23].

data accesses, and try to enhance the performance of the data access process [14].

Therefore, they do not work on the details of the physical implementation of the

memory architecture, which we refer to as physical memory binding.

2.3 Physical memory binding

Similar to logical resource binding, physical memory binding is crucial in migrating

between different implementation technologies because each technology has its own

specific parameters in logical and memory units. We can divide the research on

memory binding into two main branches:

• Memory binding in ASICs

• Memory binding in FPGAs
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In the case of ASICs, the problem is to select suitable memory components from

a memory library, and performe an acceptable placement, and design the interfaces

to access the memories. In this case there is some research done on how to store data

vectors in physical memories, guarantee the access to each data element within an

acceptable time, and with an acceptable cost [12, 25, 26, 28].

In the case of FPGAs, the problem is different because the hardware is fixed, and

the designer can only decide on a suitable configuration within the given choices as

well as the interconnects and peripheral logic around each memory unit. The research

in this field is limited to an approach to bind a single data vector to multiple types of

physical memories which are not reconfigurable [11]. There is also an Integer Linear

Programming (ILP) formulation presented in [22] to give an exact solution to the

problem with some simplifying assumptions which affect the real problem radically.

The assumptions in this formulation are:

• Different ports of a single physical memory can have completely different con-

figurations.

• All the physical memories used in covering a single data structure are from the

same type.

Moreover, this method does not account for the peripheral logical resources nor

the minimization of the amount of physical storage we need to use. It only works

based on the latency and access-time cost. On the other hand, this method tries to

expand itself to the external memory banks and some of the parameters which they

imply to the design, which makes it unique in this case.
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There are also some industrial efforts to solve the problem of physical memory

binding in FPGAs [1]. However, these tools are not powerful enough to handle the

complexity of today real-world problems because:

• They work on only one data vector.

• They only use one type of physical memories in each solution.

• They only use one configuration of the used physical memory.

• In many cases the user should provide the suitable configuration to the tool.

Having these limitations, the industrial tools are not able to work on the peripheral

logic and leftover minimization. Optimization aside, in some cases these tools are not

even able to generate a solution for the given problem.

2.4 Motivation for our work

The main motivation for this research is that the physical memory binding in FPGAs

is a new problem in CAD tools for FPGAs, and so far this task was mainly done by

engineers. However, the following two reasons are increasing the complexity of this

task beyond the ability of an engineer during an acceptable time:

a) The advancements in the fabrication technology have enabled FPGAs with hun-

dreds and even thousands of physical (also called embedded) memories with

different types and configurations [1, 29]. However, early FPGAs had very lim-

ited embedded memory resources or even none, so we did not need a tool to
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Table 2.1: Memory elements in EP2S180 FPGA from Stratix II family [1].

Feature M512 RAM Block M4K RAM Block M-RAM Block
Maximum performance 500 MHz 550 MHz 420 MHz

Quantity 930 768 9
Configurations 512*1 4K*1 64K*8
(depth*width) 256*2 2K*2 64K*9

128*4 1K*4 32K*16
64*8 512*8 32K*18
64*9 512*9 16K*32
32*16 256*16 16K*36
32*18 256*18 8K*64

128*32 8K*72
128*36 4K*128

4K*144

map the data vectors to those resources. Table 2.1 shows the types and con-

figurations for embedded memories of EP2S180 FPGA from Stratix II family

designed and manufactured by Altera company.

b) The advancements in FPGAs have made them very powerful. Therefore, they

are able to process a larger amount of data. The huge parallelism that FP-

GAs provide today has increased the data volume which we have to feed to

them. Consequently, the number and volume of processing data vectors have

increased recently. Another important reason for this increase is the migration

of different algorithms from floating-point to custom floating-point or fixed-

point algorithms. This migration is very critical to fully utilize the provided

parallelism by FPGAs because it reduces the size of processing units, so we can

fit more of them in a single FPGA chip.
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We cannot use the traditional binding algorithms to solve the physical memory

binding problem because these two types of binding have some key differences between

them. Two examples for these differences are:

• In the physical memory binding problem we have the challenge of reducing the

peripheral logic required to guarantee the proper access to all data elements.

This problem does not exist in logical resource binding.

• In physical memory binding we want to create a solution with the minimum

wasted storage in the physical memories. We have the same problem in library

binding in FPGAs because we wish to use all the logic prepared in each cell to

reduce the overall number of used cells. However the methods we need for these

two minimizations are different. This variation comes from the differences in

the way we map data vectors and operations to the physical resources.

In the next section we define the problem which we investigate in this thesis.

2.5 Problem formulation

This thesis addresses the problem of physical memory binding in FPGAs. The phys-

ical memories in FPGAs are also commonly referred to as embedded memories. As-

suming that we have multiple types of physical memories, and from each type we

have a limited number, and each type has a set of different configurations, we want

to store in them a set of data vectors called virtual memories.

It is important to stress that efficient use of embedded memories in FPGAs is

very important in the overall performance of the design because it enables us to
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store a larger amount of data close to the processing units. Therefore, it minimizes

the access to the external memories which is usually slower compared to on-chip

memories. Moreover, the bandwidth of the on-chip memory units is not comparable

to the external memories because we have to deal with the limitations of the number

of I/O pins of the FPGAs. However, we can access a large amount of data from

several embedded on-chip memories in the FPGA without these I/O limitations.

We have defined two cost functions in the process of embedded memory binding

in FPGAs:

• Amount of required peripheral logic in terms of logic cells in the FPGA (mul-

tiplexer cost)

• Amount of wasted embedded memory bits (leftover)

The peripheral logic size in our case can be translated to the multiplexer cost of

the design. In other words, when we divide a virtual memory which is larger than

a single physical memory into several physical memories, in some cases we have to

choose the physical memory we want to work with based on the provided address, so

we will need a multiplexer. Figure 2.6 presents the multiplexers in a sample mapping.

Obviously, we need eight 2:1 multiplexers to create this mapping.

An embedded memory binding which is wasteful in logical resources can affect the

entire design in an FPGA because it is possible that we have to reduce the size or the

number of the processing units in order to save some logic to do the memory binding.

However, by performing the binding process with less logical resources, we will be

able to use that logic in the processing part of the design to enhance parallelism and

increase the processing speed or resolution. Furthermore, when the binding is done
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Figure 2.6: Generated peripheral logic in memory mapping

with an extensive use of logic cells in the FPGA, this added logic will increase the

timing between the memory and the processing units because it is placed between

the memory and logic part of the design.

The leftover is the amount of unused bits of physical memories which we have

used to cover the virtual memories. We can define two types of leftover: horizontal

leftover and vertical leftover. This categorization will help us later in the design of

the algorithms. Figure 2.7 shows the two types of leftovers in a sample coverage.

In this project we have only worked with on chip physical memories because it

simplifies the timing properties. The access times of all on chip physical memories in

today FPGAs are close to each other, so we can assume that it takes the same number

of clock cycles. Moreover, due to limited amount of embedded memory resources,

we cannot guarantee the minimization of the cost functions by working on virtual

memories individually. Consequently, we should perform the mapping problem for all

virtual memories in the problem concurrently.

In order to simplify the reading of this thesis, we should explain some of the

terms which we will use in the following chapters: VM stands for “virtual memory”,
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and PM refers to “physical memory”. Also, when we discuss the configurations of a

physical memory, we refer to the number of their address entries as their height, and

the number of data bits in each address location is denoted as their width. Therefore,

we can define the concept of a short (wide) or tall (thin) configuration based on its

height compared to other possible configurations.
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Chapter 3

Algorithms for Binding Virtual

Memories to Physical Memories

In the previous chapter we discussed the general binding problem in CAD, and more

specifically the physical memory binding problem. We also discussed some reasons

why the memory mapping process in FPGAs was not a major concern in the past,

and why it is getting more complicated for existing and future designs. Furthermore,

we summarized the differences between the memory mapping problem in FPGAs and

other binding problems in CAD.

In this chapter we present a solution for the physical memory binding in FPGAs

through some intermediate steps which are simplified subproblems. These subprob-

lems will help us understand the role of different parameters involved in the complex-

ity of the problem and its solution space. However, the ultimate goal is to solve the

problem in the case of multiple virtual memories and multiple types of reconfigurable

physical memories.
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Because the problem we are tackling (physical memory binding for FPGAs) in-

volves fitting small physical memories (rectangles) into large virtual memories (bins),

one may argue that it is similar to the well-studied bin-packing or knapsack problems.

We first outline the differences between our problem the above known-problems. The

bin packing problem involves fitting a number of rectangular objects in as few bins

as possible [10]. The rectangular objects have different sizes, and the dimensions of

the bins are defined. We can also relate the problem to the 2-dimensional knapsack

problem, which is putting a number of different-sized rectangular objects with dif-

ferent values in a 2-dimensional knapsack with known dimensions to maximize the

overall value in the knapsack [18].

However, our problem is different because we allow the creation of leftover which

is not defined in any of the prior problems. Moreover, the rectangular objects which

we deal with are not random-sized because the depth (and in many cases the width)

of the physical memories are powers of 2 and multiples of each other. The fact that

physical memories are in most cases reconfigurable (i.e., although the memory capacity

stays the same, the aspect ratio changes from one configuration to another) adds an

additional dimension to our problem. In addition, the concept of multiplexer cost

cannot be introduced in any of the prior problems.

Although both problems of bin-packing and 2-dimensional knapsack are known

as NP-complete problems, we cannot assume that our problem is also NP-complete.

Nonetheless, our experience with it indicates that the problem is intractable. There-

fore, due to the lack of a formal proof, we conjecture that the problem is NP-complete.

For the rest of this thesis we focus on understanding its solution space and designing

effective algorithms that can be adopted in the industrial practice.
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Based on the problem definition in the previous chapter, we can list the parameters

with a significant role in the complexity of the problem as follows:

• Number of virtual memories,

• Number of different types of physical memories,

• Number of physical memories in each type,

• Number of different configurations for each type of physical memories,

The factors mentioned above help us to notice and understand the subproblems

which can help us to design a solution for the problem in its general format. Each

subproblem is created with elimination of at least one of the complexity factors of

the general problem. In the next three sections of this chapter we will try to discuss

the following three subproblems:

• Single virtual memory & one type of reconfigurable physical memory,

• Multiple virtual memories & one type of reconfigurable physical memory,

• Single virtual memory & multiple types of reconfigurable physical memories,

After discussing the above subproblems we will try to attack the problem in its

general format, which is “multiple virtual memories & multiple types of reconfigurable

physical memories”. This is discussed in the fourth section of this chapter. Finally

in section 3.5 we will describe a heuristic method to attack the problem in its general

format.
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3.1 Single VM - Single PM Type

In this problem we intend to map one virtual memory to a number of identical physical

memories. Each used physical memory has a configuration chosen from a variety of

predefined configurations. The only complexity factor in this case is the decision

about the configuration of the used physical memories. It is needless to mention that

the capacity of all configurations are equal, and the difference lies in the differences in

their dimensions, so as the height of configurations grows their width starts to shrink.

Observation 1: Using tall configurations reduces the multiplexer cost.

By using tall configurations we will be able to cover the depth of the virtual

memory with a smaller number of physical memories on top of each other. Therefore,

we will have a smaller multiplexer cost. Figure 3.1 shows a sample area which we

can cover with two different configurations. It can be seen that the first case creates

a 2:1 multiplexer which easily can be eliminated by using the taller configuration in

second case. However, this method does not always guarantee the minimum leftover.

To attack the problem in this case (one virtual memory and one type of physical

memories) we can divide the virtual memory into two areas and work on them sep-

arately. This division is done based on the depth of the tallest configuration of the

used physical memory.

The first area, which is at the top of the virtual memory, is an area which we

can cover by using the physical memories in their tallest possible configuration with-

out creating any vertical leftover. Therefore, we can simply cover all of this area by

putting the physical memories in their tallest configuration next to and at the top

of each other. This method also creates the minimum amount of horizontal leftover
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Figure 3.1: Elimination of unnecessary multiplexers.

for this area because tall configurations have smaller widths compared to short con-

figurations. Therefore, the leftover area which is created by the unused width of the

physical memories in the last column is minimized in this case.

Observation 2: Using tall configurations reduces the horizontal leftover.

This observation is always true assuming that the widths of the physical memory

in its different configurations are multiple of each other. This assumption is valid

in all the regular configurations of the physical memories of today FPGAs. Regular

configurations are the configurations which do not use the allocated parity bits as data

bits to increase the capacity of the physical memory, which may affect the reliability

of the design in environments that are prone to soft errors.

The second area is the remaining part at the bottom of the physical memory.

This area cannot be filled with the tallest configuration without creating any vertical

leftover. Figure 3.2 shows an example of different configurations of a sample physical
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Figure 3.2: Division of the virtual memory into two parts.

memory and the division of the virtual memory into two areas based on the given

configurations.

In conclusion, by dividing the virtual memory into two areas based on the depth

of the tallest configuration of the physical memory we can cover the top part with

minimum leftover and multiplexer cost. This is simply done by using the physical

memories in their tallest configuration to cover the top area. However, the binding

process for the bottom area depends on the objective of the algorithm. Hence, this

area can be filled with two different strategies:

• Minimizing the amount of leftover.

• Minimizing the multiplexer cost.
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In the following subsections of this section we will discuss the methods for binding

the bottom part of the virtual memory for minimization of leftover and multiplexer

cost respectively.

3.1.1 Binding for Leftover Minimization

As introduced in section 2.5, there are two types of leftovers in a physical memory

binding problem: vertical and horizontal. To minimize the overall leftover we have to

minimize the sum of these two amounts. In this section we will start with minimizing

the vertical leftover in a binding problem, and then we will relate it to the horizontal

leftover minimization.

Vertical leftover is the result of using configurations of the physical memory which

are taller than the uncovered area at the bottom of the virtual memory. The larger

the difference between the depth of the configuration and the depth of the uncovered

area, the more leftover will be created. Therefore, we can reduce the vertical leftover

by using the configurations which are shorter than the depth of the bottom part.

In other words, it is likely to reduce the vertical leftover by replacing a tall con-

figuration used in the bottom area with a combination of the configurations which

are shorter than the depth of the bottom area. It is obvious that this optimization

in vertical leftover comes with an increment in the multiplexer cost because we will

have more physical memories on top of each other.

Observation 3: The depths of different configurations of a physical memory are

a multiple of each other.
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A simple method can help us find the set of configurations which minimize the

vertical leftover using the third observation. Each time we want to add a memory to

cover the remaining depth of the virtual memory, we have two options:

• Choosing the shortest configuration which is taller than the remaining depth

(this option creates leftover).

• Choosing the tallest configuration which does not create leftover (this option

decreases the remaining uncovered depth of the virtual memory which we will

try to cover in the next level by repeating this decision again).

By choosing the second option every time we can find the desired set of con-

figurations. The only concern is that having two identical configurations on top of

each other is not acceptable because it will violate the first observation. Figure 3.3

shows the bottom area of two virtual memories and all the configurations of a certain

physical memory which should be used to cover them.

It is apparent that as we proceed in the algorithm, we can come up with less

leftover with the penalty of increasing the multiplexer cost. It should be emphasized

that in some cases it is impossible to have different ways to cover an empty area. For

example, with the given configurations in figure 3.3 and a depth of 31, we only have

one option to cover the empty area because all other options lead to two identical

configurations on top of each other which violates the first observation.

So far we have worked on the reduction of the vertical leftover in the bottom

area of the virtual memory. However, the reduction of the vertical leftover can lead

to more horizontal leftover because short configurations have a larger width. This
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Figure 3.4: Blocks of physical memories.

increase in the width of the configurations of physical memories can lead to a higher

horizontal leftover.

Observation 4: The widths of different configurations of a physical memory are

a multiple of each other.

In order to solve this problem we can create blocks of physical memories with the

best configuration set we have found to minimize the vertical leftover. These blocks

have a rectangular shape because the widths of different configurations are a multiple

of each other (observation 4). Therefore, the width of the block will be the width of

the shortest (widest) configuration which we use in the bottom, and the depth of the

block is the sum of depths of the used configurations. Figure 3.4 shows the blocks in

the two cases of figures 3.3(d) and 3.3(h).

We can put these blocks of physical memories next to each other to cover the
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bottom area of the virtual memory. These blocks create the minimum possible ver-

tical leftover. However, the final block which we use at the very right side of the

virtual memory can create horizontal leftover. In some cases the replacement of this

block with other configurations which we have found in the previous step to cover

the depth of the region is helpful to reduce the overall leftover. It is obvious that

this replacement causes a greater vertical leftover. However, on the other hand the

decrease in the horizontal leftover can make up for this in many cases. We have to

calculate the leftover, and choose the minimum case. Figure 3.5 shows the use of

different configurations instead of the last physical memory block and the effect of

each configuration on the overall leftover.

Apparently, the set of configurations used in the figure 3.5(c) results in the best

overall leftover and multiplexer size. All the sets of configurations used in the final

blocks of figure 3.5 are the results of intermediate steps of reducing the vertical leftover

which are visible in figures 3.3(b) to 3.3(d).

To review what we have discussed in this subsection, algorithm 1 presents a pseudo

code for the leftover minimization approach in a binding problem with one virtual

memory and one type of physical memories. The inputs are:

• “V Mdimensions”: The depth and width of the virtual memory.

• “PMquantity”: The number of available physical memory resources.

• “PMconfiguration set”: The list of available configurations (their widths and depths)

for the physical memories.

The outputs are the solution to the problem which are the configuration of the
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Figure 3.5: Different choices for the final block to reduce the overall leftover.
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physical memories we have used in the solution (“used PMsconfiguration”) and their

exact position in the virtual memory(“used PMsdisposition”).

The “divide” function in the first line of the algorithm performs the procedure of

dividing the virtual memory into “top” and “bottom” areas. This division is done

based on the depth of the tallest configuration of the physical memory and the depth

of the virtual memory, and as illustrated in line 1, these two parameters are the inputs

of the “divide” function.

Then, we use the “cover” function in the second line to cover the top area of the

virtual memory with the tallest configuration of the physical memory, and we save

the coverage for the top area by updating the information of physical memories we

have used in the solution by using the “update” function.

In line 4, the “block creator” function creates all possible combinations of the

physical memory configurations on top of each other to cover the depth of the bottom

area of the virtual memory with respect to the first observation, and stores them in

“blocklist”. The “while loop” in the fifth line covers the bottom area of the virtual

memory with the block with the smallest heights among all blocks in the “blocklist” as

long as it does not create any horizontal leftover, which is captured in the condition

of the “while loop”.

The “for loop” in line 9 covers the bottom-right part of the virtual memory with

one of the blocks in “blocklist” each time. The “leftover calculator” function in the

twelfth line calculates the leftover of the generated solution by subtracting the capac-

ity of the virtual memory from the sum of the capacities of the used physical memo-

ries in the solution, and stores the result in “leftovercurrent”. Also, the “leftoverbest”

stores the leftover of the best solution so far. If the currently generated solution has a
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smaller leftover than the best solution so far, we will overwrite the best solution and

its leftover by the current solution. This procedure is captured in the “if statement”

in line 13, and as presented in line 14; the “save” function stores the solution by

saving the configuration and position of the used physical memories in the solution.

Finally, the algorithm will return these values as its output.

Algorithm 1: Single VM - Single PM type leftover minimization

Input : V Mdimensions, PMquantity, PMconfiguration set

Output: used PMsconfiguration, used PMsdisposition

(top area, bottom area) = divide(V Mdimensions,1

PMtallest configuration ∈ PMconfiguration set);
cover(top area, PMtallest configuration ∈ PMconfiguration set);2

update(used PMsconfiguration, used PMsdisposition);3

blocklist = block creator(bottom areadepth, PMconfiguration set);4

while (leftoverhorizontal = 0) do5

cover(bottom area, blockshortest ∈ blocklist); //to reduce vertical leftover6

update(used PMsconfiguration, used PMsdisposition);7

end
leftoverbest = ∞;8

foreach block ∈ blocklist do9

cover(bottom area, block);10

update(used PMsconfiguration, used PMsdisposition);11

leftovercurrent = leftover calculator(V Mdimensions, used PMsconfiguration);12

if (leftovercurrent < leftoverbest) then13

save(used PMsconfiguration, used PMsdisposition); //save current solution14

leftoverbest = leftovercurrent;15

end

end

Return used PMsconfiguration, used PMsdisposition;16

48



M.A.Sc. Thesis - Kaveh Ghorbani Elizeh McMaster - Electrical & Computer Engineering

C1 C3C2

(a) Configuration set for
the physical memory

T
op area

B
ottom

 
area

V
irtual m

em
ory depth

(b) 3 to 1 multiplexers

B
ottom

 area

V
irtual m

em
ory 

depth

(c) No multiplexers

Figure 3.6: Minimum multiplexer cost binding.

3.1.2 Binding for Multiplexer Cost Minimization

When we intend to minimize the multiplexer cost, we can simply choose the shortest

configuration which completely covers the depth of the bottom area. Figure 3.6 shows

the result of applying this method for two different virtual memories.

In fact, the solution with the minimum leftover gives the minimum number of

required physical memories to cover the virtual memory, and the solution with the

minimum multiplexer cost is the one with the maximum number of physical memories

which we use in a reasonable solution. Therefore, when the number of available

physical memories is less than the number we need to create the minimum leftover,

the problem does not have a solution. Also, when the given number of physical

memories is greater than or equal to the number of required physical memories to

come up with the minimum multiplexer cost, we can easily solve the problem without
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any concerns. However, we need to have a different approach to solve the problem

when the given number of physical memories is between the minimum (number of

required physical memories for minimum leftover) and the maximum (number of

required physical memories for minimum multiplexer cost).

In this case, we have no problem with the minimum leftover solution because it

consumes a lower number of physical memories than the given amount. However,

when calculating the binding for the minimum multiplexer cost solution we have to

deal with a new constraint, which is the number of used physical memories, so we

cannot simply accept the solution mentioned at the beginning of this subsection.

Instead, we want to use all of the given physical memories in a way that minimizes

the multiplexer cost.

As mentioned earlier, we have filled the top part in an optimum way. Therefore,

the solution in this case lies in the arrangement of physical memories in the bottom

area of the virtual memory.

In subsection 3.1.1 we went through a number of steps to find all the sets of differ-

ent configurations of physical memories to fill the bottom area of the virtual memory.

Also, we defined blocks of physical memories based on each set of configurations.

Now, the solution we are looking for is the correct combination and arrangement of

these blocks. We may exclude some configurations or change the amount of area they

cover to create all possible combinations. Figure 3.7 shows a sample combination of

different configurations for the first virtual memory in figure 3.3.

The pseudo code for minimum multiplexer cost binding is presented in algorithm

2. In the first 3 lines of the algorithm we perform the exact procedure that we

did in algorithm 1, and cover the top area of the virtual memory. In line 4, the
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Figure 3.7: A sample combination of different blocks to reduce the multiplexer size

“max PM calculator” function calculates the maximum number of required physi-

cal memories to solve the problem in the case of minimum multiplexer cost, and

stores this number in “PMmax required”. Based on this number, in line 5 we choose

the suitable strategy for multiplexer cost minimization. If we have sufficient avail-

able physical memories we cover the bottom part with the shortest configuration

of the physical memory which is taller or equal to the depth of the bottom area

(PMsuitable configuration). This strategy is captured in lines 6 to 8.

In the other case, which is captured in lines 9 to 18, we create all blocks of

physical memories with respect to the depth of the bottom area, and save them in

“blocklist”. The “for loop” in line 12 is in charge of creating all possible combinations

of blocks next to each other (blockset) to cover the bottom area. The multiplexer cost

51



M.A.Sc. Thesis - Kaveh Ghorbani Elizeh McMaster - Electrical & Computer Engineering

Algorithm 2: Single VM - Single PM type multiplexer cost minimization

Input : V Mdimensions, PMquantity, PMconfiguration set

Output: used PMsconfiguration, used PMsdisposition

(top area, bottom area) = divide(V Mdimensions);1

cover(top area, PMtallest configuration ∈ PMconfiguration set);2

update(used PMsconfiguration, used PMsdisposition);3

PMmax required = max PM calculator(V Mdimensions, used PMsconfiguration,4

used PMsdisposition);
if ((PMquantity - # of used PMs) ≥ PMmax required) then5

PMsuitable configuration =6

shortest(PMconfiguration ∈ PMconfiguration set) > bottom areadepth;
cover(bottom area, PMsuitable configuration);7

update(used PMsconfiguration, used PMsdisposition);8

end
else9

blocklist = block creator(bottom areadepth, PMconfiguration set);10

multiplexer costbest = ∞;11

foreach blockset ⊆ blocklist do12

cover(bottom area, blockset);13

update(used PMsconfiguration, used PMsdisposition);14

multiplexer costcurrent = mux cost calculator(V Mdimensions,15

used PMsconfiguration, used PMsdisposition);
if (multiplexer costcurrent < multiplexer costbest) then16

save(used PMsconfiguration, used PMsdisposition); //save current solution17

multiplexer costbest = multiplexer costcurrent;18

end

end

end

Return used PMsconfiguration, used PMsdisposition;19
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of each generated solution is calculated with “mux cost calculator” function using

the dimensions of the virtual memory and all used physical memories in the solution,

and stored in “multiplexer costcurrent”. The “if statement” in line 16 compares the

multiplexer cost of the current solution with the multiplexer cost of the best solution

so far (“multiplexer costbest”), and overwrites the best solution and its multiplexer

cost so far if the current solution gives a smaller multiplexer cost.

3.2 Multiple VMs - Single PM Type

To make the problem we discussed in the previous section more general we can work

with multiple virtual memories. Therefore, in this section we will work on minimiza-

tion of leftover and multiplexer cost in the case of multiple virtual memories and one

type of physical memories. The overall multiplexer cost and leftover will be the sum

of all multiplexer costs and leftovers for all virtual memories.

In many cases, working on the virtual memories independently can lead to mini-

mization of the overall leftover and multiplexer cost because the resources are iden-

tical, so the use of a certain physical memory in a virtual memory does not limit the

choices for other virtual memories. However, this is not always the case. We will

discuss the problem in its different cases in more details below.

To minimize the overall leftover, we can minimize the leftover in each virtual mem-

ory independently. Therefore, the same method introduced in the previous section

can be applied to each virtual memory to minimize the leftover in binding process. In

the case of minimizing the overall multiplexer cost with adequate number of physical

memories, we can apply the same algorithm in the previous section and work on the

virtual memories independently.
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The minimum number of physical memories we need to solve the problem is the

number of used physical memories in all virtual memories when the leftover is min-

imized. Also, the maximum number of physical memories we will consume to solve

the problem is the number of used physical memories in all virtual memories when

the multiplexer cost is minimized.

Therefore, when the given number of physical memories is less than the minimum

required amount, the problem does not have a solution, and if the given number is

larger than or equal to the maximum consumption, we can easily create the solution

as discussed above (working on virtual memories independently). However, when we

do not have enough number of physical memories to generate the minimum overall

multiplexer cost, we cannot work on the virtual memories independently, and this is

the only added complexity in this section.

In this case coming up with the minimum leftover solution does not change. How-

ever, finding the minimum multiplexer cost solution needs some extra effort. We

have to use all the given physical memories to reduce the multiplexer cost as much

as possible. In order to do that, we will divide all the virtual memories to top and

bottom areas, and fill all top areas by employing the method in the previous section.

To fill the bottom areas of the virtual memories we have to create all combinations

of physical memory blocks for all the virtual memories. The combinations for each

virtual memory are produced from its own blocks, and the blocks are generated with

the same method we used in the previous section for each virtual memory.

The pseudo code for generating the minimum multiplexer cost binding in the

case of multiple virtual memories and one type of physical memories is presented in

algorithm 3. In the first 4 lines of the algorithm we perform the procedures of the
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previous algorithm on each virtual memory individually. Also, in line 5 the maximum

number of required physical memories is calculated for each virtual memory, and the

overall number of required physical memories is stored in “PMmax required”. In the

case of having enough number of physical memories we work on virtual memories

individually, and use the method that we use in the case of a single virtual memory

for each virtual memory (lines 6 to 10).

However, in the case of having not enough of physical memories, which is captured

in the “else” statement in line 11, we create the block list for each virtual memory

(V Mblock list). The nested loops in lines 15 and 16 create all the possible combinations

of the blocks to cover the bottom areas of all virtual memories. The “blockset” is a

list with its size equal to the number of virtual memories, and we store all possible

combinations of the combinations of different blocks for different virtual memories

in it, so in each location of the “blockset” we have a “blockset”. We compare each

generated solution with the best solution so far in line 20, and save the solution if it

has a better multiplexer cost than the best solution so far.

Most of today‘s FPGAs have only one type of embedded memory. Therefore, the

presented method can lead to the solution for many of today’s problems. However,

a new generation of FPGAs is emerging with several different types of embedded

memories. This problem is addressed in the next section.

3.3 Single VM - Multiple PM Types

In this section we will try to make the problem more general from another perspective.

Some FPGAs have more than one type of embedded reconfigurable physical memories

to provide more flexibility in saving the on chip data. This increase in the number of
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Algorithm 3: Multiple VMs - Single PM type multiplexer cost minimization

Input : V Msdimensions, PMquantity, PMconfiguration set

Output: used PMsconfiguration, used PMsdisposition

foreach (VM) do1

(V Mtop area, V Mbottom area) = divide(V Mdimensions);2

cover(V Mtop area, PMtallest configuration ∈ PMconfiguration set);3

update(used PMsconfiguration, used PMsdisposition);4

end
PMmax required = max PM calculator(V Msdimensions, used PMsconfiguration,5

used PMsdisposition);
if ((PMquantity - # of used PMs) ≥ PMmax required) then6

foreach (VM) do7

PMsuitable configuration =8

shortest(PMconfiguration ∈ PMconfiguration set) > V Mbottom area depth;
cover(V Mbottom area, PMsuitable configuration);9

update(used PMsconfiguration, used PMsdisposition);10

end

end
else11

foreach (VM) do12

V Mblock list = block creator(V Mbottom area depth, PMconfigurations);13

end
multiplexer costbest = ∞;14

foreach blockset[1 .. # of VMs] ⊆ V Mblock list[1 .. # of VMs] do15

foreach i ∈ [1 .. # of VMs] do16

cover(V Mbottom area[i], blockset[i]);17

update(used PMsconfiguration, used PMsdisposition);18

end
multiplexer costcurrent = mux cost calculator(V Msdimensions,19

used PMsconfiguration, used PMsdisposition);
if (multiplexer costcurrent < multiplexer costbest) then20

save(used PMsconfiguration, used PMsdisposition);21

multiplexer costbest = multiplexer costcurrent;22

end

end

end

Return used PMsconfiguration, used PMsdisposition;23
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options can increase the complexity of the algorithms which we will use to find the

bindings for minimum multiplexer size and leftover.

In the two previous cases we only dealt with choosing the proper configuration

of the resources. However, in this case, in addition to the previous decision, we

have to decide on the number of each type of physical memories in the solution too.

Moreover, each type has its own number and configuration set. Unlike the previous

sections preference of the tallest configuration of physical memories does not always

result in reduction of the multiplexer cost. Figure 3.8 shows a comparison between

using two different configurations in the case of having more than one type of physical

memories. It is shown that the taller configuration does not necessarily result in a

smaller multiplexer cost.

Assuming Cn is the cost of a single bit n:1 multiplexer, we can compare the

multiplexer cost in figure 3.8(c) and 3.8(d) as follows:

64× C2 + 64× C4 versus 96× C2 + 32× C5

=⇒ 64× C4 versus 32× C2 + 32× C5

It is not possible to compare the two sides of the equation unless we have the exact

values of C2, C4, and C5. Therefore, we cannot prove that the use of tall configurations

always leads to a lower multiplexer cost. In fact, tall configurations can improve the

multiplexer cost locally, but in many cases due to the lack of available large physical

memories we will have to cover some areas in the absence of large memories with

smaller physical memories (e.g. the right area in figure 3.8(d)). Therefore, this

increase in multiplexer size in other areas can increase the overall multiplexer cost.

On the other hand, as illustrated in figure 3.8(c), by using the configurations of large

physical memories which are shorter than the shortest configuration which covers the
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entire depth of the empty part in the virtual memory, we can distribute them to a

larger multiplexer cost area in the virtual memory. Therefore, it is critical to account

for all configurations of physical memories when we have more than one type of them.

In order to attack the problem in this case and come up with the best leftover or

multiplexer cost solution, we have to create all possible solutions and compare them

with each other. First, we have to sort the physical memories based on their capacity

in a decreasing order, and start from the largest physical memory. In each step of

the algorithm we work with only one type of physical memories. The first job is to

find the maximum number for the current type in our solution. We simply find this

maximum assuming that we want to cover the entire uncovered area with this type

in minimum multiplexer cost format. After finding the maximum number we proceed

with the algorithm by creating different branches of solutions. In each branch we

have a different number for current type between zero and the maximum. This will

help us to create all solutions with different numbers of the current physical memory.

In the next step we have to create all possible combinations of configurations

for each assigned number, and finally we have to create all possible combinations of

placements for each combination of the configurations. The only limitation is that

we do not violate the first observation except for the tallest configurations. It is also

accepted that for some sets of configurations we may not be able to come up with a

feasible placement, so we simply ignore these sets.

After finishing this step each generated solution has covered a certain area of the

virtual memory. Now we select the next physical memory type in the list and repeat

every step of the algorithm for the remaining part of the virtual memory. The final

type of the physical memory will be processed differently. We can reuse the algorithms
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we had in the section 3.1. However, in this case the empty area is not necessarily

rectangular anymore.

The pseudo code for what we discussed in this section for solving the prob-

lem of single virtual memory and multiple types of physical memories is presented

in algorithm 4. In this algorithm we have 2 sets of outputs, one for the mini-

mum leftover solution (best solutionleftover) and one for multiplexer cost solution

(best solutionmuliplexer cost), and each of these solutions consists of the used physical

memories type and configuration (used PMstype&configuration) and their exact position

in the virtual memory (used PMsdisposition). Also, the physical memory inputs of the

algorithm are the different types of physical memories (PM types) and the number

of each type (PM typesquantity) and the set of configurations assigned to each type

(PM typesconfiguration set).

The leftover of the best leftover solution is stored in “leftoverbest”, and the mul-

tiplexer cost for the best multiplexer cost solution is saved in ‘multiplexer costbest‘”.

We sort the physical memory types based on their capacity in line 3, and the “for

loop” in line 4 uses the first n-1 types. In line 5 we calculate the maximum number of

the current type of the physical memories that we may require in the solution based on

the empty area in the virtual memory and the capacity of the current type. The empty

area of the virtual memory can be calculated based on the dimensions of the virtual

memory and the dimensions of the used physical memories so far. The “for loop”

in line 6 guarantees that we assign all different numbers for the current type in the

solutions, and in line 7 we create all the combinations of the configurations for the as-

signed number of the current type using the “config combination generator” function,

and store them in “configs list”. Each entry of the “configs list” is a combination
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of configurations of the assigned number of physical memories called “configs set”.

In line 9, the “position combination generator” function creates all possible sets of

placements for each “configs set”, and stores them in pos list. Each entry of the

pos list consists of the set of positions for the set of configurations in hand called

“pos set”. In the core of these nested loops we update the “used PMsconfiguration”

and “used PMsdisposition” as a temporary solution. Then, we call the routine for

1 virtual memories and multiple types of physical memories in line 12 to cover the

remaining empty parts in the virtual memory. After calculating the multiplexer and

leftover cost of the generated solution we save the solution if it is better than what

we have achieved so far in lines 15 to 20 in terms of leftover or multiplexer cost.

3.4 Multiple VMs - Multiple PM Types

Binding a number of virtual memories to multiple types of reconfigurable physical

memories is the most general and complicated problem we want to discuss in this

thesis. Moreover, the algorithm which is capable to solve this problem can solve all

the subproblems we discussed previously.

When we are working with multiple types of physical memories we cannot work

on the virtual memories independently to find the minimum overall leftover or multi-

plexer cost because the use of each resource in each virtual memory limits the number

of this particular resource in other virtual memories. Therefore we have a new dimen-

sion in the algorithms for the current problem compared to section 3.3. The overall

approach is the same. However, we have to work on all virtual memories at the same

time.

While creating all combinations of assigned physical memories of the current type
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Algorithm 4: Single VM - Multiple PM types - exhaustive solution search

Input : V Mdimensions, PM types, PM typesquantity, PM typesconfiguration set

Output: best solutionmuliplexer cost, best solutionleftover

multiplexer costbest = ∞;1

leftoverbest = ∞;2

sort(PM types);3

foreach (PM type 6= PMsmallest type) do4

PMmax required = max PM calculator(V Mdimensions,5

used PMstype&configuration, used PMsdisposition, PM type);
foreach (i ∈ [0, min(PM typequantity, PMmax required)]) do6

configs list = config combination generator(i, PM typeconfiguration set);7

foreach (configs set ∈ configs list) do8

pos list = position combination generator(configs set, V M);9

foreach (pos set ∈ pos list) do10

update(used PMsconfiguration, used PMsdisposition);11

call(1V M − 1PM);12

multiplexer costcurrent = mux cost calculator(V Mdimensions,13

used PMstype&configuration, used PMsdisposition);
leftovercurrent = leftover calculator(V Mdimensions,14

used PMstype&configuration);
if (multiplexer costcurrent < multiplexer costbest) then15

best solutionmuliplexer cost =16

used PMstype&configuration, used PMsdisposition;
multiplexer costbest = multiplexer costcurrent;17

end
if (leftovercurrent < leftover best) then18

best solutionleftover =19

used PMstype&configuration, used PMsdisposition;
leftoverbest = leftovercurrent;20

end

end

end

end

end

Return best solutionmuliplexer cost, best solutionleftover;21
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to virtual memories, instead of a single number we produce an array of numbers.

The size of the array is equal to the number of virtual memories, and each number is

the number of assigned physical memories of that type to its index virtual memory,

and the sum of entries is the total number of used physical memories of that type in

current solution. We work on all virtual memories at the same time through all steps

of the algorithm.

The pseudo code for generating all possible solutions for the general problem is

provided in algorithm 5. As illustrated in lines 5 and 6, in the case of multiple

virtual memories we calculate the maximum required number of physical memories

of the current type for each virtual memory individually. Therefore, assigning the

number of used physical memories of the current type in the current solution is

different in this case. First we create all the possible numbers of assigned physical

memories to the overall solution (‘i’) in line 7, and after that, we create all the

combinations of the assigned numbers to virtual memories with the sum of ‘i’. This

task is done by “number combination generator” function and the results are stored

in “assigned list”. Each entry of the “” consists of the set of assigned numbers to

virtual memories called “assigned set”.

The rest of the algorithm is similar to algorithm 4. The only difference is that

in this case the “leftover calculator” function calculates the leftover of the generated

solution by subtracting the sum of the capacities of virtual memories from the sum

of the capacities of all used physical memories in the solution.
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Algorithm 5: Multiple VM - Multiple PM types exhaustive solution search
Input : V Msdimensions, PM types, PM typesquantity, PM typesconfiguration set

Output : best solutionmuliplexer cost, best solutionleftover

multiplexer costbest = ∞;1

leftoverbest = ∞;2

sort(PM types);3

foreach (PM type 6= PMsmallest type) do4

foreach (V M) do5

V MPM max required = max PM calculator(V Mdimensions,6

used PMstype&configuration, used PMsdisposition, PM type);
end
foreach (i ∈ [0, min(PM typequantity,

∑
V Mmax required)]) do7

assigned list = number combination generator(i, # of VMs);8

foreach (assigned set ∈ assigned list) do9

foreach (j ∈ assigned set) do10

configs list = config combination generator(j, PM typeconfigurations,11

V Mj);
foreach (configs set ∈ configs list) do12

pos list = position combination generator(configs set, V Mj);13

foreach (pos set ∈ pos list) do14

update(used PMsconfiguration, used PMsdisposition);15

call(nV M − 1PM);16

multiplexer costcurrent = mux cost calculator(V Msdimensions,17

used PMstype&configuration, used PMsdisposition);
leftovercurrent = leftover calculator(V Msdimensions,18

used PMstype&configuration);
if (multiplexer costcurrent < multiplexer costbest) then19

best solutionmuliplexer cost =20

used PMstype&configuration, used PMsdisposition;
multiplexer costbest = multiplexer costcurrent;21

end
if (leftovercurrent < leftover best) then22

best solutionleftover =23

used PMstype&configuration, used PMsdisposition;
leftoverbest = leftovercurrent;24

end
end

end
end

end
end

end

Return used PM typesconfiguration, used PM typesdisposition;25
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3.5 A Heuristic Approach

In the previous section we tried to discuss the complexity of the general problem,

which was binding multiple virtual memories to multiple types of reconfigurable phys-

ical memories. Moreover, we presented a method to explore the entire solution space

to find the desired solution for the problem. However, due to the complexity of the

problem, coming up with an exact solution by exploring the entire solution space does

not seem to be a practical method because of its runtime. Therefore, we have to use

heuristic methods to achieve a suboptimal solution within an acceptable time.

In this section we will discuss two different heuristic approaches for the two parts

of the problem, which are leftover and multiplexer cost minimization respectively.

The following two subsections explain the steps of the heuristic approaches in each

case for the problem of binding multiple virtual memories to multiple types of physical

memories.

3.5.1 Heuristics for Leftover Reduction

The basic idea of the heuristic algorithm for leftover reduction is to use larger types

of physical memories as long as they do not create any leftover. Therefore, it sorts the

types of physical memories based on their capacity and starts with the largest type

to fill the virtual memories. The algorithm tries to work on all the virtual memories

at the same time, and in each step it only works with one type of physical memory.

Filling the uncovered parts of virtual memories with a type of physical memories

has three steps with three different strategies. As mentioned earlier, we start with the

largest type of physical memory, and apply these three steps on the virtual memories

using the current type. Then, the output is given to the next part which applies
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the same three steps to the remaining empty parts using the next type of physical

memories. Here, it is very important to know when to move from one strategy to

another and from one type to the next type. We will discuss the three strategies and

the conditions for switching between them in the algorithm:

Step 1: In this step we will only use the tallest configuration of the physical memory

to cover the empty parts of the virtual memories. However, we do not allow any

types of leftover. We sort the virtual memories based on their depth increas-

ingly, and start with the shortest one, and whenever the current virtual memory

cannot accommodate more physical memories of the current type in their tallest

configuration without any leftover, we move to the next virtual memory.

In this step we fill the virtual memories column-wise. Figure 3.9 shows two

sample virtual memories and the way we fill each one. It is also important to

mention that the empty area is not necessarily rectangular always because of

the parts that the previous physical memories have covered so far in the virtual

memory. Also, we always have to keep track of the number of available physical

memories and the number that we have used so far in the algorithm.

It is important to know that the cost of a multiplexer grows linearly with re-

spect to the number of its inputs, so reducing the number of inputs in a large

multiplexer saves the same amount of logic compared to a small multiplexer.

Therefore, covering an empty part in a virtual memory can be done column-wise

or row-wise without any visible difference in the overall multiplexer cost. More-

over, starting with the shortest virtual memory does not imply any advantages

or shortcomings in the multiplexer cost of the solution compared to the case
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Figure 3.9: Filling the virtual memories in the first step.

that we start with the tallest virtual memory.

If we finish this step, and the current type of physical memories is still avail-

able, we can go to step 2. Otherwise, we have to go to the next type of physical

memories and run the step 1 for it.

Step 2: In this step of the algorithm we will work on the bottom part of the virtual

memories which is not covered yet. To start, we sort the virtual memories based

on the depth of their bottom uncovered part, and start with the virtual memory

with the deepest uncovered part in its bottom area. The strategy in this step

is again not to create any type of leftover. Therefore, we have to use other

configurations of the physical memory which do not create any horizontal or

vertical leftover; again, we prefer tall configurations, and that is why we try to
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work on deeper uncovered parts first.

We continue the strategy in this step until we run out of physical memories of

the current type, or there are no more spots left in the virtual memories which

we can cover without creating any leftover. As of this point in the algorithm

the use of this type of physical memory creates leftover, so we prefer not to use

it, and go for smaller types which create less leftover. However, the problem is

we may have not enough of those smaller types to cover all parts of all virtual

memories. Therefore, we need an estimation of the number of smaller physical

memories (remaining types) which are needed for the rest of solution of the

problem, and if we need more smaller physical memories than are available, we

have to use more of the current type with the penalty of creating leftover, which

leads us the step 3.

The estimation function is a very simple algorithm which at the beginning

calculates the number of current physical memory type required to cover the

remaining parts of all virtual memories for minimum multiplexer cost solution.

It has been discussed in section 3.1 that the minimum multiplexer cost solution

gives the maximum required number of physical memories to come up with an

acceptable solution for the problem.

We can estimate the overall memory capacity we need to solve the rest of the

problem by multiplying the number we calculated above to the capacity of the

current type of the physical memories. Then, by comparing this number with

the sum of available capacities for all smaller types of physical memory, which

is the overall capacity we have still available we can conclude whether we have
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enough physical memories in other types or not. In the case of having not

enough physical memories in other types we have to continue using the current

type with the cost of additional leftover. Adding extra physical memories of

the current type is discussed in step 3.

Step 3: We keep executing the strategy in this step until we make sure that the

number of physical memories in smaller types is adequate to cover the remain-

ing empty parts in all virtual memories. In this step, we know that adding

each physical memory creates some leftover. Therefore, we create a list of all

the candidate spots for the current type of physical memory and the leftover

created for each spot. Then, we sort this list increasingly based on the created

leftover, and add the physical memories one by one. After adding each physical

memory we rerun the estimation function to decide whether we should still work

with the current type or whether we can move to the next type.

It is also obvious that we can only run this step while we have available physical

memories of the current type. Therefore, we should keep track of the used and

available numbers of physical memories in the current type. After finishing this

step we can move to the next type of physical memories and start from step 1

for that type.

This algorithm should be used for the first n-1 types of physical memories, and we

can reuse the algorithms in section 3.2 for the last type of physical memories because

of its desirable runtime and optimum results. The only difference is that the empty

areas in this case are not necessarily rectangular.
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Algorithm 6 provides a pseudo code to summarize what we discussed for heuristics

to reducing the leftover in a solution. Lines 3 to 6 represent the first step of the

algorithm, where we only use the tallest configuration of the physical memory to

cover the virtual memory without creating any leftover. In line 7 we sort the virtual

memories based on the depth of their uncovered bottom part, and in lines 8 to 11

we try to use the tallest possible configuration of the current type of the physical

memories to cover the empty parts at the bottom of the virtual memories without

creation of leftover. In line 12 we have the estimation function (estimate) which

calculates the estimated number of required physical memories in smaller types to

complete the solution to the problem using the capacities of the smaller types of

physical memories and the area of the empty parts in all virtual memories. The

result is stored in in “PM next typerequired number”. The comparison of this number

with the actual number of available physical memories in smaller types provides the

condition for the third step of the algorithm. Based on this condition we add a single

physical memory in a place in virtual memories with minimum implied leftover each

time, which is done by “add” function. Finally, the “nV M −1PM” function is called

to cover the remaining uncovered parts of virtual memories (if there is any) with the

smallest type of physical memory which is the last type.

3.5.2 Heuristics for Multiplexer Cost Reduction

Similar to the leftover heuristics, the heuristic approach for multiplexer cost reduction

consists of a number of steps. The basic idea in this case is to use large physical

memories in their tall configurations as long as they give us a better multiplexer cost

compared to the smaller types. The challenge is how to use the larger types more
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Algorithm 6: Leftover reduction heuristic

Input : V Msdimensions, PM types, PM typesquantity, PM typesconfiguration set

Output: used PMstype&configuration, used PMsdisposition

sort(PM types);1

foreach (PM type 6= PMsmallest type) do2

foreach (V M) do3

while (leftover = 0) do4

cover(V M , PMtallest configuration); //step 15

update(used PMstype&configuration, used PMsdisposition);6

end

end
sort(V Ms, bottom areadepth);7

foreach (V M) do8

while (leftover = 0) do9

cover(V M , PMtallest possible configuration); //step 210

update(used PMstype&configuration, used PMsdisposition);11

end

end
PM next typerequired number = estimate(V Msdimensions,12

used PMstype&configuration, used PMsdisposition, PM next types);
while (PM next typerequired number < PM next typesavailable number) do13

add(V Ms, PM type, “min leftover”); //step 314

update(used PMstype&configuration, used PMsdisposition);15

PM next typerequired number = estimate(V Msdimensions,16

used PMstype&configuration, used PMsdisposition, PM next types);
end

end
call(nV M − 1PM);17

Return used PM typesconfiguration, used PM typesdisposition;18

71



M.A.Sc. Thesis - Kaveh Ghorbani Elizeh McMaster - Electrical & Computer Engineering

efficiently to reduce the overall multiplexer cost of the solution.

Again, we sort the physical memory types decreasingly based on their capacity,

and go through the following steps for each type. Also, we try to work on all virtual

memories at the same time.

Step 1: This step is exactly the same as the first step in the leftover reduction

because filling empty parts with the tallest configuration of the physical memory

without creating any type of leftover is the most efficient way to use a physical

memory to reduce multiplexer cost.

We have to keep track of the used and available physical memories, and we have

to stop this step if we have consumed all the physical memories of the current

type. After filling every possible spot with this step, if we have more physical

memories of this type available we will go to the next step.

Step 2: In this step we sort all the virtual memories based on the depth of the empty

part in their bottom area decreasingly, and only work on the ones which the

current physical memory can cover their entire bottom area depth. It means

smaller types of physical memories cannot cover the entire depth of the bottom

area of these virtual memories with their tallest configuration. We start from

the virtual memory with the deepest bottom part, and try to fill its bottom

empty area with the configuration which covers the entire depth. We put the

physical memories in this configuration next to each other in the bottom area

of the virtual memory as long as we do not create any horizontal leftover.

After working on each virtual memory we move to the next one as long as there

are physical memories of the current type left. When we finished working on
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all the eligible virtual memories for this step, and we still have more physical

memories of this type available we can go to the step 3.

Step 3: In this step we work on the empty parts at the right hand side of the virtual

memories. These are the parts which we did not cover in the first step due to

creation of horizontal leftover. We sort the virtual memories based on the width

of the uncovered area on their right hand side, and start with the virtual memory

with the widest area. In this step we only work with the tallest configuration of

the physical memory, and do not allow creating of vertical leftover. Therefore,

we will work only on the virtual memories which we worked on in the first step

(the ones deeper than the depth of the tallest configuration).

After this step if the current type of physical memories is still available we can

move to the step 4. Otherwise, we should move to the next type of physical

memories, and start from the first step with them.

Step 4: In the second step we worked on the virtual memories which the smaller

types of physical memories could not cover the entire depth of their bottom

empty area with their tallest configuration. In this step we can perform the

same procedure for the virtual virtual memories for whom we have a proper

configuration of the current physical memory. It means that there exists a

configuration for the current type with the same depth as the desirable config-

uration of the smaller type.

If the depth of the shortest configuration of the current physical memory is

taller than the desirable configuration of the smaller type to cover the bottom

area of the virtual memory, we can assume that this type is not a good choice

73



M.A.Sc. Thesis - Kaveh Ghorbani Elizeh McMaster - Electrical & Computer Engineering

73

170

39

150

22

100Step 
1.1

Step 
1.2

Step 4

S
tep

 2

S
tep

 3.1

S
tep

 3.2
C2C1

128

64

4

8

Figure 3.10: Steps 1 to 4 of the multiplexer cost heuristic algorithm

for covering the bottom area of the virtual memory. We do not allow any hor-

izontal leftover in this step too, and as mentioned before, we sort the virtual

memories based on the depth of their uncovered bottom area decreasingly.

After completion of this step if we still have the current type available we will

go to the next step. Figure 3.10 shows the configuration set of a sample physical

memory, and the way we use it in the first 4 steps of our heuristic approach for

the 3 sample virtual memories. We have numbered the steps in such a way that

it represents the priority of each virtual memory in each step. For example,

step 1.1 is prior to step 1.2.

Step 5: In step 2 we did not allow the creation of horizontal leftover because it was

possible that we could use the current type of the physical memories in a more

efficient way to reduce the overall multiplexer cost. In this step we are willing to

use the current type despite of the leftover it creates to reduce the multiplexer

74



M.A.Sc. Thesis - Kaveh Ghorbani Elizeh McMaster - Electrical & Computer Engineering

cost for the areas that we left in step 2 to avoid horizontal leftover. Therefore,

we sort the virtual memories we worked on in step 2 based on the depth of their

empty bottom area, and add the physical memory which creates the horizontal

leftover to them one by one to reduce the multiplexer cost.

The spots which we worked on in this step were the only remaining spots which

we could come up with a efficient usage for the current type of physical memo-

ries. From now on the use of this type does not have any advantage over smaller

types in terms of the multiplexer cost reduction. Moreover, this type creates

more leftover compared to the smaller types. Therefore, we prefer not to use

this type in the solution anymore. However, to make this decision we need to

make sure that the overall capacity of the remaining physical memory types is

sufficient to cover all the remaining empty parts in all the virtual memories.

In this case we can use the estimation function which we discussed in step 2 of

the leftover reduction algorithm in subsection 3.5.1 to decide whether we can

go to the next type or we should continue using the current type due to lack of

overall capacity of smaller physical memory types. In the case that we should

continue with the current type we will move to step 6, which is discussed below.

Step 6: We are running this step because we know that we do not have sufficient

smaller physical memory types to cover all the remaining uncovered parts of all

virtual memories. Therefore, we have to use more instances of the current type

although it would not be an ideal choice if adequate number of smaller physical

memory types were available. This step works on the virtual memories which

we processed in step 4, and we left their bottom-right part uncovered due to
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creation of horizontal leftover. We sort these virtual memories based on the

depth of their uncovered bottom part, and start from the deepest one. After

adding each instance of the current type to each virtual memory, we rerun the

estimation function to make sure whether we should continue with the current

type or not.

Step 7: In this step we try to work on the virtual memories which we did not process

their bottom area during the previous steps because the depth of the area was

small and suitable for the smaller types of physical memories.

First, we sort the virtual memories based on the depth of their uncovered bot-

tom area decreasingly, and start from the virtual memory with the deepest

bottom area. It is obvious that due to the small depth of the bottom area we

will use the shortest configuration of the current physical memory to cover it.

It is very important to know that we do not allow creation of horizontal leftover

in this step. Moreover, after adding each physical memory we rerun the estima-

tion function to make sure that we need to continue in this step or we can move

to the next type of physical memories. When we finish adding physical memo-

ries in this step, and adding any other physical memory will result in creation

of horizontal leftover, and the estimation function shows that we still need to

use the current type, we should move to the next step assuming that there are

more physical memories left from this type. Therefore, we have to keep track

of the used physical memory resources in different steps.

Step 8: The only uncovered spots left in all virtual memories in this step are the ones

that we left uncovered in the last step because of the creation of the horizontal
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leftover. In this step we sort the virtual memories based on the area of their

uncovered part in their bottom right decreasingly. We start to cover these spots

with the current type of the physical memories as long as the estimation function

requires us to do that, and we have physical memories from the current type.

There are 3 possibilities in this case:

• We run out of the current type, so we have to move to the next type, and

ignore the result of the estimation function.

• The result of estimation function does not change during this step, so we

will fill all the empty parts with the current type and complete the solution.

• The result of estimation function changes during this step, so we move to

the next physical memory.

Steps 5 to 8 of the multiplexer cost reduction heuristic are presented in figure

3.11 which shows same physical and virtual memories of figure 3.10, and the

way we continue our heuristic method on them.

The algorithm we presented in this section should be used for all except the last

type of physical memories, and we should reuse the algorithm introduced in section

3.2 for the final type of physical memories. However, we should consider that the

empty area in this case is not necessarily rectangular.

Algorithm 7 summarizes what we discussed in this section in a pseudo code format.

In the first step which is captured in lines 3 to 5 we work on all virtual memories

starting from the shortest (V Mshortest) to the one with the highest depth (V Mtallest).

Lines 6 to 8 represent the second step which works on the virtual memories from the
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Figure 3.11: Steps 5 to 8 of the multiplexer cost heuristic algorithm

one with the deepest bottom area (V Mtallest bottom area) to the ne with the shortest

bottom area (V Mshortest bottom area), and fills the bottom part of the virtual memories

with the shortest configuration of the current physical memory which covers the entire

depth of the bottom part (PMtallest possible configuration) as long as it does not create

any horizontal leftover (h leftover).

The third step of the algorithm is coded in lines 9 to 11 which works on the virtual

memories from the one with the widest empty right side area (V Mwidest right area) to

the one with the thinnest uncovered area on its right side (V Mthinnest right area). In

line 12 we start the fourth step, and find the depth of the shortest configuration

which can cover the entire depth of the empty part at the bottom of each virtual

memory in line 13 by using the “proper conf finder” function, and store the result

in “V M proper configuration depth”. If this value is available in the depths of the

configurations of the current type of physical memories (PM configuration setdepth),
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we use the current type in this step for the particular virtual memory.

Step 5 is captured in lines 16 to 19 which covers the bottom part of the virtual

memories in the case of the depth of the bottom part is larger than the heights of the

tallest configuration of the next type of physical memory (PM nexttypetallest configuration).

Line 19 represents the estimation function which we will use in the final 3 steps of

the algorithm which is the same as the estimation function in the leftover algorithm.

However, we have presented its arguments in a more abstract way here to shorten the

pseudo code. Therefore, the “used PMs” represents the type, configuration, and the

disposition of the used physical memories in the solution.

Step 6 is coded in lines 22 to 26, and lines 27 to 30 are for step 7, and finally,

step 8 is captured in lines 31 to 34. It should be noted that the final 3 steps of the

algorithm add only one physical memory to the virtual memory which we work on

each time. Also, steps 7 and 8 only work on the virtual memories which have not been

processed in steps 2,4, and 5 (V M /∈ V Ms steps2, 4, 5). Finally, the “nV M − 1PM”

function is called to cover the remaining uncovered parts of virtual memories (if there

is any) with the smallest type of physical memory, which is the last type.
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Algorithm 7: Multiplexer cost reduction heuristic
Input : V Msdimensions, PM types, PM typesquantity, PM typesconfiguration set

Output : used PMstype&configuration, used PMsdisposition

sort(PM types);1
foreach (PM type 6= PMsmallest type) do2

foreach (V M from V Mshortest to V Mtallest) do3
while (leftover = 0) do4

cover(V M , PMtallest configuration); //step 15

end

end
foreach (V M from V Mtallest bottom area to V Mshortest bottom area) do6

while (h leftover = 0) & (V M bottom areadepth > next PM typetallest configuration) do7
cover(V M , PMtallest possible configuration); //step 28

end

end
foreach (V M from V Mwidest right area to V Mthinnest right area) do9

while (v leftover = 0) do10
cover(V M , PMtallest configuration); //step 311

end

end
foreach (V M from V Mtallest bottom area to V Mshortest bottom area) do12

V M proper configuration depth = proper conf finder(V Mbottom area, PM typesconfigurations);13
while (h leftover = 0) & (V M proper configuration depth ∈ PM configuration setdepth) do14

cover(V M , PMproper configuration); //step 415

end

end
foreach (V M from V Mtallest bottom area to V Mshortest bottom area) do16

if (bottom areadepth > PM nexttypetallest configuration) then17
V M proper configuration depth = proper conf finder(V Mbottom area,18
PM typesconfigurations);
cover(V M , PMtallest possible configuration); //step 519

end

end
PM next typerequired number = estimate(V Msdimensions, used PMs, PM next types);20
while (PM next typerequired num < PM next typesavailable num) do21

foreach (V M from V Mtallest bottom area to V Mshortest bottom area) do22
V M proper configuration depth = proper conf finder(V Mbottom area,23
PM typesconfigurations);
while (V M proper configuration depth ∈ PM configurationsdepth) do24

add(V M , PMproper configuration); //step 625
PM next typerequired number = estimate(V Msdimensions, used PMs, PM next types);26

end

end
foreach (V M /∈ V Ms steps2, 4, 5) do27

while (No added h leftover) & PM next typerequired num < PM next typesavailable num do28
add(V M , PMtallest possible configuration); //step 729
PM next typerequired number = estimate(V Msdimensions, used PMs, PM next types);30

end

end
foreach (V M /∈ V Ms steps2, 4, 5) do31

while (PM next typerequired num < PM next typesavailable num) do32
add(V M , PMtallest possible configuration); //step 833
PM next typerequired number = estimate(V Msdimensions, used PMs, PM next types);34

end

end

end

end
call(nV M − 1PM);35
Return used PMconfiguration, used PMdisposition;36
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Chapter 4

Experimental Results

In the previous chapter we have tried to understand the complexity of the problem

by going through some intermediate steps and subproblems to discover the role of

different parameters involved in the overall process. Then, we gave a method to

search the entire solution space to find the optimum solutions for minimum leftover

and minimum multiplexer cost. Since the runtime of the exhaustive search method

was not acceptable, we introduced two different heuristic approaches to come up with

suboptimal solutions for the problem to reduce leftover or multiplexer cost in an

acceptable runtime.

In this chapter we will start with a case study on soft tissue modeling to observe

the dimensions of the problem in a realistic environment, and we will evaluate the

results of our heuristic against a manual memory binding approach for the problem.

In the second section of this chapter we will provide some experimental results and

a comparison between our heuristic methods and the exact solution for a set of hy-

pothetical examples. Furthermore, we will try to analyze the results, and provide

evidence for them.
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4.1 Case Study

Soft tissue modeling has a vital role in virtual surgery because it gives an artificial

feeling of the tissue to the surgeon. This modeling uses Finite Element Modeling

(FEM) analysis and has to be done in real-time. The FEM analysis uses iterative

algorithms to solve a set of equations to find the position (or force) of each node in

the tissue. The most compute-intensive part in the iterative algorithms is a sparse

matrix-vector multiplication which is an intermediate step in the solution generation

process. The goal is to accelerate this matrix-vector multiplication to increase the

overall speed of the FEM analysis, and be able to meet the real-time constrains

introduced by the environment and the nature of the problem.

The memory architecture has a vital role in the overall performance and structure

of the architecture. Therefore, in this case study we can use our heuristic methods and

compare them with the manual solution which we originally designed for the problem.

Moreover, if such a tool was available when we started this hardware accelerator

project, we could have checked the applicability of several choices for the processing

core of the architecture in a fraction of time.

To generate a model for a tissue, we employ a meshing algorithm first. A meshing

algorithm creates a set of nodes on the surface and inside the tissue and calculates the

dependencies between nodes by measuring their movements and forces with respect

to each other. The meshing algorithm creates a 2-dimensional sparse matrix for the

tissue, which holds all physical information such as density, hardness, and softness of

each part of the tissue. This model can be processed to simulate the reflections of

the tissue to an external force or displacement.
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To attack the problem we first start with the properties of the sparse-matrix:

• The matrix is symmetric.

• The matrix has blocks of non-zero elements in size of 3 × 3.

• The meshing algorithm creates a limited number of neighbors per node to man-

age the condition number of the generated matrix [9, 27]. Therefore, we can

assume that in this case, the number of non-zero elements in each row and col-

umn is bounded. In this particular type of matrices, the number of neighbors

is limited to 18.

Assuming we have a model with ‘n’ nodes, the size of the matrix will be “3n×3n”.

In the iterative solution, we have to multiply this matrix by an intermediate vector

with the size of “3n×1”. We will call the matrix ‘A’ and the vector ‘d’, and the result

of multiplication will be stored in vector “Ad” with the dimension of “3n × 1”. An

acceptable number of nodes for a simple model is about 500, and a real-time model

should be updated 100-1000 times per second [17].

In order to meet the real-time constraints of the problem, we should go for highly

parallel solutions which leads us to use several multiplier units concurrently. FP-

GAs are a suitable candidate for design and development of highly parallel solutions

because they have a large number of embedded multipliers and embedded physical

memory units to store data on chip.

For the purpose of this project we used a Stratix II EP2S60 FPGA with the

specifications given in table 4.1.

We are aiming to fit 512 nodes in this FPGA. Therefore, the size of the matrix ‘A’
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Table 4.1: Specifications of Stratix II EP2S60 FPGA [1].

Feature M512 RAM M4K RAM M-RAM Embedded 18 × 18
Block Block Block Multipliers

Quantity 329 255 2 144
Configurations 512 × 1 4K × 1 64K × 8 9 × 9

(depth × width) 256 × 2 2K × 2 64K × 9 18 × 18
128 × 4 1K × 4 32K × 16 36 × 36
64 × 8 512 × 8 32K × 18
64 × 9 512 × 9 16K × 32
32 × 16 256 × 16 16K × 36
32 × 18 256 × 18 8K × 64

128 × 32 8K × 72
128 × 36 4K × 128

4K × 144

is “1536× 1536”. The maximum number of non-zero elements will be the maximum

number of neighbors for each node (18) times the number of nodes (512) times the

number of non-zero elements for each neighborhood between 2 nodes (9), which is

“18× 512× 9 = 82944”. This can be translated to the maximum number of non-zero

elements per row/column of 82944 ÷ 1536 = 54. Also, the bit width of the matrix

elements is 12, and vector elements are in 16 bits. The result of multiplication is

stored in 16 bits.

The solution which we want to work on processes the neighbors of each node in 2

consecutive clock cycles. Therefore, it has to process 9 neighbors in each clock cycle,

and we know that each neighborhood is a set of 9 numbers. Therefore, we need 81

multipliers in parallel to calculate the result of the matrix-vector multiplication, and

the whole process of multiplication will take 1024 clock cycles.

We have 9 multiplication clusters, and each cluster is in charge of processing one

neighbor of the current node. Therefore, there are 9 multipliers in each cluster. Figure
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4.1 shows a multiplication cluster, and the way we feed the values of matrix ‘A’ and

vector ‘d’ into it. As presented in this figure, there are 9 distinct values of matrix

‘A’ coming into the cluster and each one is fed to a multiplier. However, we have

only 3 distinct vector ‘d’ values going to each cluster, and each value is connected to

3 multipliers because those multipliers are in the same column, and need the same

operand from the vector.
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Z adder tree
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Y adder tree

Figure 4.1: A cluster of multipliers.

To process 9 nodes concurrently, all the clusters should work in parallel, and their

outputs should be connected to 3 different adders. Each adder is in charge of summing

one row of the multiplication results. As each node (3 rows) is processed in 2 clock

cycles, the number of adder inputs should be 28, where 27 are for the values of the

current cycle and 1 for the sum in previous clock cycle which we use every other clock

cycle. Figure 4.2 shows the way we connect the group of clusters together and to the

adder.
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Figure 4.2: Connection of the clusters to the X adder (Y and Z adders are not shown.
They are connected to the second and third row of the multipliers in clusters).

After designing the processing core, we have to design and develop the memory

architecture around this unit. In this step we can take advantage of the sparsity of

matrix ‘A’ and store only non-zero elements of the matrix. However, this comes with

the cost of keeping track of the position of non-zero elements because we need their

position to perform the multiplication properly.

We have a maximum of 18 neighbors for each node, and each neighborhood implies

a 3 × 3 non-zero block. Therefore, we can assume that every 3 consecutive rows of

the matrix have the same placement for non-zero element values and each non-zero

element is followed by two other ones in a row. Therefore, we can read 3 consecutive

rows of matrix ‘A’ at the same time and do the multiplication. As we are only storing

non-zero elements of the matrix, we should save the index of the non-zero block we

want to work on because we have to find the relative spot in the vector ‘d’ as the

second argument of the multiplication. We have 512 nodes, so we need 9 bits of
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address to look up the respective value for the current elements of the matrix in the

vector.

We have 9 clusters, and each cluster should receive 9 values from matrix ‘A’ every

clock cycle. As we have 512 nodes, we need 9 bits of index for each cluster which

helps us to look up the respective vector ‘d’ values for each cluster. Therefore, we

need 9 × 9 × 12 = 972 bits to feed the ‘A’ values to the cluster and 9 × 9 = 81 bits

as the address for looking up proper value in vector ‘d’. Figure 4.3 shows the storage

strategy we use to store the non-zero values of matrix ‘A’ and their indices which

are used as addresses to lookup vector ‘d’ elements (as the second operand of the

multiplications).

‘A’ index 0

MRAM1 MRAM0 179 M4Ks
81 A values 
12 bits each

10 bit 
counter

1 K

128 128 4

3 K

21 M4Ks

1 K 9 A indices 
9 bits each

4

4 4

1 K

Unused 
part of 

the
M-RAM

Figure 4.3: Memory architecture for storing matrix ‘A’.

This memory architecture is accessed linearly from address 0 to 1023 (each 2

addresses are for the neighbors of 1 node) because we do the multiplication row

wise, unlike the memory architecture for vector ‘d’ which is accessed randomly. As

we always work with 3 consecutive rows of matrix ‘A’, we always have to lookup 3

consecutive values of vector ‘d’ which we call ‘x’, ‘y’, and ‘z’. Therefore, we store the

vector in such a form that every address holds 3 consecutive values, so by each access
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we will be able to retrieve all values at once. Figure 4.4 shows how we store vector

‘d’.

‘A’ index 0

‘A’ index 1

512
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X Y Z
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4
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M
4
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Figure 4.4: Memory architecture for storing vector ‘d’.

All the memory elements in the Stratix II FPGA we use are dual port. Therefore,

each storage of vector ‘d’ can provide 2 values in every clock cycle. To feed all the

clusters we need to have 5 copies of the vector ‘d’ storage architecture, and each copy

can provide inputs to 2 clusters. As illustrated in figure 4.5, the address inputs of the

vector ‘d’ storage are provided by the index outputs of the matrix ‘A’.

The multiplication results are stored in vector ‘Ad’ which has a similar architecture

to vector ‘d’. We should write the outputs of the 3 adders every other clock cycle in

this vector. The address is provided by using the value of the same counter we use

to read the matrix values. Figure 4.6 shows the architecture for the storage and the

input signals for vector ‘Ad’.

Due to the level of complexity of this case study, the exhaustive search solution

takes several weeks to finish. Therefore, we will compare our heuristic methods to
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Figure 4.6: Memory architecture for storing vector ‘Ad’.

a manual solution which we designed for this problem before performing this re-

search. Table 4.2 presents the comparison between the 2 cases, and obviously using

the heuristic approaches saves us a tremendous amount of time, and it gives more

efficient results in this case.

Table 4.2: Heuristic algorithm and a manual solution comparison.

Solution Runtime Multiplexer Leftover Used Used Used
cost M-RAMs M4Ks M512s

Manual 48 hrs 0 789504 bits 2 236 0
Heuristic 8 s 0 396288 bits 1 255 104

In the next section we will provide some experimental results in both of the heuris-

tic and exhaustive solution space search approaches, and will analyze them to illus-

trate the weaknesses of our heuristic approach. The results also will easily convince

us that the exhaustive solution space search method is not a practical approach to

solve the problem for complex real-world applications.
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4.2 Experimental Results

In this section we report the results of running the heuristic algorithms and the ex-

haustive solution search method for a number of experiments with different sets of

virtual memories and physical resources. Each set of virtual memories consists of 2 to

3 virtual memories selected from a pool of memories. Table 4.3 shows the sets used

in the experiments along with the dimensions of each memory.

Table 4.3: Virtual memory sets.

Virtual memory set Virtual memories Dimensions

V1
VML1 4500 × 7

VMXS 100 × 20

V2
VML1 4500 × 7

VMS2 700 × 90

V3
VMM2 1500 × 30

VMS1 700 × 15

V4
VMM1 1500 × 11

VMS2 700 × 90

V5
VML1 4500 × 7

VMM1 1500 × 11

VMS2 700 × 90

V6
VML1 4500 × 7

VMM2 1500 × 30

VMS1 700 × 15

V7
VML1 4500 × 7

VMS2 700 × 90

VMXS 100 × 20
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We use two types of physical memories with different quantities and configuration

sets for each experiment. Tables 4.4 and 4.5 show the different configuration sets of

the physical memory types that we use in the experiments.

Table 4.4: Configuration sets of the first physical memory type (M8K).

2 configurations 4 configurations 6 configurations

for M8K for M8K for M8K

1024 × 8 2048 × 4 8192 × 1

512 × 16 1024 × 8 4096 × 2

512 × 16 2048 × 4

256 × 32 1024 × 8

512 × 16

256 × 32

Table 4.5: Configuration sets of the second physical memory type (M512).

2 configurations 5 configurations

for M512 for M512

64 × 8 512 × 1

32 × 16 256 × 2

128 × 4

64 × 8

32 × 16
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The number of small physical memory type (M512) in all experiments is 500, and

the number for the large type (M8K) is 5 or 10. The experiments are named with

the following format:

V[set number ] N[quantity of large type] C[number of configurations for large type, small type]

For example, V1 N10 C4,5 means: using the first set of virtual memories in table

4.3 and 10 physical memories of the first type which has 4 configurations (table 4.4),

and 500 physical memories of the small type with 5 configurations (table 4.5). With

this explanations, we can now proceed to presenting the tables of the results.

Table 4.6: Experiments on V1 with 2 configurations for M512.

Exhaustive search Heuristic

Min Lo of Min Min Mux of Run Min Lo of Min Min Mux of Run
Mux min Mux Lo Lo % min Lo time Mux min Mux Lo Lo % min Lo time
(LB) (bit) (bit) (bit) (s) (LB) (bit) (bit) (bit) (s)

V1 N5 C2,2 32 12068 5924 15.03 48 0 32 12068 12068 26.48 32 0

V1 N10 C2,2 21 23844 5924 15.03 48 0 21 23844 12068 26.48 445 0

V1 N5 C4,2 27 10532 5924 15.03 48 0 27 10532 10532 23.92 27 0

V1 N10 C4,2 7 15652 5924 15.03 48 0 7 15652 15652 31.84 7 0

V1 N5 C6,2 18 11044 5924 15.03 38 0 101 30500 30500 47.66 101 0

V1 N10 C6,2 0 32036 5924 15.03 38 1 0 32036 30500 47.66 101 0

Table 4.6 presents the results of experiments on the first set of virtual memories.

These experiments are all done with 2 configurations for the small physical memory

type, and the effect of increasing the number of available physical memories in large

types and increasing the number of their configurations is obvious.

In the case of the exhaustive search solution, the results show that increasing

the quantity of the large physical memory type results in reducing the multiplexer

cost which makes sense because large types can cover a larger depth of the virtual
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memory. Also, when we have more options for configuration of the large physical

memory types we can use tall configurations to reduce the multiplexer cost, which is

apparent in table 4.6. When we have an adequate number of small physical memory

types, the leftover of the solution is defined by these small types. Therefore, changes

in the quantity and the number of configurations of the large type does not affect

the leftover of the design. However, when we have more options for the large types

(quantity and configuration set) we may be able to reduce the multiplexer cost of the

minimum leftover solution, which is the case in the last 2 rows of the table.

The heuristic approach results are close to the optimum in some cases. However,

it is obvious that increasing the number of options does not guarantee better results

for the heuristic algorithm. Moreover, the leftover overhead in the case of using the

heuristic algorithm in this set of experiments is about 10-30% because of an assump-

tion in the heuristic algorithm which is not always correct. We have assumed that

small types of physical memories are more suitable in the solutions which work on

reducing the leftover simply because we should be able to cover small uncovered parts

with them with less implied leftover. However, this is dependent on the configura-

tions of the small types. As an example we can refer to the case when the thinnest

configuration of the small type is wider than some configurations of the large type.

This is the exact case that we have in the set of experiments in table 4.6. In this

set of experiments, the heuristic leaves the right end part of the virtual memories for

the small type, and does not use the large type for them. However, the large type

has thinner configurations than the small type, and is more suitable to reduce the

horizontal leftover.

Table 4.7 contains the results of the same experiments with 5 configurations for
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Table 4.7: Experiments on V1 with 5 configurations for M512.

Exhaustive search Heuristic

Min Lo of Min Min Mux of Run Min Lo of Min Min Mux of Run
Mux min Mux Lo Lo % min Lo time Mux min Mux Lo Lo % min Lo time
(LB) (bit) (bit) (bit) (s) (LB) (bit) (bit) (bit) (s)

V1 N5 C2,5 21 2340 1316 3.78 28 0 21 5412 5412 13.91 21 0

V1 N10 C2,5 21 2340 1316 3.78 28 0 21 5412 5412 13.91 21 0

V1 N5 C4,5 7 5412 1316 3.78 16 0 7 5412 1316 3.78 16 0

V1 N10 C4,5 7 5412 1316 3.78 16 1 7 5412 1316 3.78 16 0

V1 N5 C6,5 4 12068 1316 3.78 10 3 8 19236 1316 3.78 10 0

V1 N10 C6,5 0 26404 1316 3.78 10 7 0 26404 1316 3.78 10 0

the small type of physical memories. The first notable issue is that the leftover in

both cases of exhaustive search and heuristic algorithm is decreased. The reason is

that some of the extra configurations in this case for the small type are taller than

what we had in previous experiments. Therefore, we are able to reduce the horizontal

leftover more effectively with the current set of configurations. Moreover, the heuristic

algorithm works much better with the current set of configurations for the small type

because the current set of configurations holds the property we have assumed in our

heuristic approach. Therefore, when we leave a part of virtual memory to be filled

with a smaller type of physical memory, we can be confident that the smaller type is

more suitable than the current type for this relatively small part.

The first half of table 4.8 contains the results for experiments on the second set of

virtual memories (V2) using 2 configurations for the small type of physical memories,

and the second half is for the case with 5 configurations for the small type. Obviously,

the increase in the number of types of the small physical memory type makes a visible

growth in the runtime of the exhaustive search method because of the added number

of options. The other observation we can have from the results is that the number
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Table 4.8: Experiments on V2.

Exhaustive search Heuristic

Min Lo of Min Min Mux of Run Min Lo of Min Min Mux of Run
Mux min Mux Lo Lo % min Lo time Mux min Mux Lo Lo % min Lo time
(LB) (bit) (bit) (bit) (s) (LB) (bit) (bit) (bit) (s)

V2 N5 C2,2 340 9436 9436 9.079 340 0 561 9436 9436 9.079 561 0

V2 N10 C2,2 116 11996 9436 9.079 118 0 481 35036 35036 27.05 481 0

V2 N5 C4,2 340 9436 9436 9.079 340 1 421 25820 25820 21.46 421 0

V2 N10 C4,2 116 11996 9436 9.079 118 14 309 46300 29916 24.05 325 0

V2 N5 C6,2 330 9436 9436 9.079 330 4 345 34012 34012 26.47 345 0

V2 N10 C6,2 106 11996 9436 9.079 108 336 201 38108 38108 28.74 201 0

V2 N5 C2,5 78 14044 1244 1.299 118 17 78 14044 1244 1.299 118 0

V2 N10 C2,5 38 26844 1244 1.299 118 41 38 26844 26844 22.12 38 0

V2 N5 C4,5 78 14044 1244 1.299 106 2139 82 8924 1244 1.299 106 0

V2 N10 C4,5 38 26844 1244 1.299 106 17353 42 21724 5340 5.349 106 0

V2 N5 C6,5 78 14044 1244 1.299 100 8842 98 19164 1244 1.299 100 0

V2 N10 C6,5 66 34012 5340 5.349 100 0

of configurations and the quantity of memories have a direct effect on the run-time

of the exhaustive search algorithm. However, the heuristic method does not seem to

be affected with this parameters. Tables 4.9 and 4.10 show the results of applying

both solution methods on the third and forth set of virtual memories (V3 and V4)

respectively.

So far we have reported the results of the algorithms on the virtual memory sets

with 2 virtual memories. The following 3 tables (4.11, 4.12, and 4.13) contain results

for the virtual memory sets with 3 virtual memories (V5, V6, and V7).

As presented in these tables, the number of virtual memories has a direct effect on

the run-time of the exhaustive solution search method. Also, there is a visible growth

in the run-time of the heuristic method when the number of virtual memories and

the number of configurations of the small type of physical memories are increased.

However, compared to the run-time of the exact solution method, the results of the
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Table 4.9: Experiments on V3.

Exhaustive search Heuristic

Min Lo of Min Min Mux of Run Min Lo of Min Min Mux of Run
Mux min Mux Lo Lo % min Lo time Mux min Mux Lo Lo % min Lo time
(LB) (bit) (bit) (bit) (s) (LB) (bit) (bit) (bit) (s)

V3 N5 C2,2 132 4404 3892 6.553 135 0 172 6964 4404 7.352 204 0

V3 N10 C2,2 30 10036 3892 6.553 135 1 30 10036 4404 7.352 204 0

V3 N5 C4,2 132 4404 3892 6.553 135 0 220 20788 3892 6.553 252 0

V3 N10 C4,2 0 26420 3892 6.553 105 0 0 26420 3892 6.553 252 0

V3 N5 C6,2 132 4404 3892 6.553 135 0 220 20788 3892 6.553 252 0

V3 N10 C6,2 0 26420 3892 6.553 105 4 0 26420 3892 6.553 252 0

V3 N5 C2,5 30 6964 820 1.456 77 15 37 5940 1332 2.344 45 1

V3 N10 C2,5 30 6964 820 1.456 77 18 30 9012 1332 2.344 45 1

V3 N5 C4,5 18 13108 820 1.456 77 217 25 11572 820 1.456 77 1

V3 N10 C4,5 0 26420 820 1.456 77 471 0 26420 820 1.456 77 1

V3 N5 C6,5 18 13108 820 1.456 77 1155 25 11572 820 1.456 77 1

V3 N10 C6,5 0 26420 820 1.456 77 7232 0 26420 820 1.456 77 1

Table 4.10: Experiments on V4.

Exhaustive search Heuristic

Min Lo of Min Min Mux of Run Min Lo of Min Min Mux of Run
Mux min Mux Lo Lo % min Lo time Mux min Mux Lo Lo % min Lo time
(LB) (bit) (bit) (bit) (s) (LB) (bit) (bit) (bit) (s)

V4 N5 C2,2 248 12148 12148 13.26 248 0 248 12148 12148 13.26 248 0

V4 N10 C2,2 83 20340 12148 13.26 134 0 152 35188 32628 29.1 200 0

V4 N5 C4,2 244 8564 8564 9.725 244 0 248 12148 12148 13.26 248 0

V4 N10 C4,2 72 20340 8564 9.725 118 3 152 37236 16244 16.97 200 0

V4 N5 C6,2 244 8564 8564 9.725 244 2 248 12148 12148 13.26 248 0

V4 N10 C6,2 72 20340 8564 9.725 118 59 152 37236 16244 16.97 200 0

V4 N5 C2,5 61 13684 884 1.1 101 50 69 11124 884 1.1 101 1

V4 N10 C2,5 21 26484 884 1.1 101 96 29 23924 21364 21.18 101 1

V4 N5 C4,5 61 13684 884 1.1 101 3373 69 12660 884 1.1 101 1

V4 N10 C4,5 21 26484 884 1.1 101 12704 29 25460 4980 5.895 101 1

V4 N5 C6,5 61 13684 884 1.1 101 18222 69 12660 884 1.1 101 1

V4 N10 C6,5 29 25460 4980 5.895 101 1
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Table 4.11: Experiments on V5.

Exhaustive search Heuristic

Min Lo of Min Min Mux of Run Min Lo of Min Min Mux of Run
Mux min Mux Lo Lo % min Lo time Mux min Mux Lo Lo % min Lo time
(LB) (bit) (bit) (bit) (s) (LB) (bit) (bit) (bit) (s)

V5 N5 C2,2 468 17000 17000 13.28 468 0 689 17000 17000 13.28 689 0

V5 N10 C2,2 228 17000 17000 13.28 228 1 593 40040 37480 25.24 641 0

V5 N5 C4,2 468 17000 13426 10.79 500 4 549 33384 33384 23.12 549 0

V5 N10 C4,2 224 13416 13416 10.78 224 184 405 37480 37480 25.24 405 0

V5 N5 C6,2 458 17000 13416 10.78 490 25 473 41576 41576 27.25 473 0

V5 N10 C6,2 214 13416 13416 10.78 214 6140 281 43624 43624 28.21 281 0

V5 N5 C2,5 89 14440 1640 1.456 129 6774 97 11880 1640 1.456 129 19

V5 N10 C2,5 49 27240 1640 1.456 129 25966 57 24680 22120 16.62 129 21

V5 N5 C4,5 101 8296 1640 1.456 117 12

V5 N10 C4,5 61 21096 5736 4.914 117 21

V5 N5 C6,5 109 19560 1640 1.456 111 16

V5 N10 C6,5 85 33384 3688 3.216 111 21

Table 4.12: Experiments on V6.

Exhaustive search Heuristic

Min Lo of Min Min Mux of Run Min Lo of Min Min Mux of Run
Mux min Mux Lo Lo % min Lo time Mux min Mux Lo Lo % min Lo time
(LB) (bit) (bit) (bit) (s) (LB) (bit) (bit) (bit) (s)

V6 N5 C2,2 456 8744 8744 9.133 456 0 613 11816 9256 9.616 645 0

V6 N10 C2,2 115 9256 8744 9.133 163 0 128 11816 9256 9.616 645 0

V6 N5 C4,2 442 16936 8744 9.133 449 1 457 25128 25128 22.41 457 0

V6 N10 C4,2 115 9256 8744 9.133 113 26 265 49192 25128 22.41 457 0

V6 N5 C6,2 412 33320 8744 9.133 446 5 429 33320 33320 27.69 429 0

V6 N10 C6,2 105 9256 8744 9.133 123 937 333 33320 33320 27.69 333 0

V6 N5 C2,5 51 8744 1576 1.779 105 2677 58 5672 2088 2.344 73 18

V6 N10 C2,5 51 8744 1576 1.779 105 5576 58 10792 2088 2.344 73 17

V6 N5 C4,5 42 9768 1576 1.779 93 65396 49 8232 1576 1.779 93 22

V6 N10 C4,5 25 18984 1576 1.779 93 21

V6 N5 C6,5 53 20008 1576 1.779 87 16

V6 N10 C6,5 33 33320 1576 1.779 87 18
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Table 4.13: Experiments on V7.

Exhaustive search Heuristic

Min Lo of Min Min Mux of Run Min Lo of Min Min Mux of Run
Mux min Mux Lo Lo % min Lo time Mux min Mux Lo Lo % min Lo time
(LB) (bit) (bit) (bit) (s) (LB) (bit) (bit) (bit) (s)

V7 N5 C2,2 360 10508 10508 9.82 360 1 581 10508 10508 9.82 581 0

V7 N10 C2,2 136 13068 10508 9.82 138 2 501 36108 36108 27.23 501 0

V7 N5 C4,2 360 10508 10508 9.82 360 7 441 26892 26892 21.79 441 0

V7 N10 C4,2 136 13068 10508 9.82 138 152 329 47372 30988 24.31 345 0

V7 N5 C6,2 350 10508 10508 9.82 350 43 365 35084 35084 26.66 365 0

V7 N10 C6,2 126 13068 10508 9.82 128 4872 221 39180 39180 28.88 221 0

V7 N5 C2,5 78 14604 1804 1.835 118 458 78 14604 1804 1.835 118 3

V7 N10 C2,5 38 27404 1804 1.835 118 1352 38 27404 27404 22.12 38 2

V7 N5 C4,5 78 14604 1804 1.835 106 54083 82 9484 1804 1.835 106 3

V7 N10 C4,5 42 22284 5900 5.762 106 3

V7 N5 C6,5 98 19724 1804 1.835 100 2

V7 N10 C6,5 66 34572 5900 5.762 100 3

heuristic method are acceptable regarding its run-time.

The number of configurations of the smallest type of physical memories affects

the run-time of the heuristic method because we have reused the algorithm in section

3.2 in our heuristic method. Therefore, the heuristic algorithm applies a branching

method in the binding of the smallest physical memory type to generate an acceptable

coverage.
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Chapter 5

Conclusion

In this thesis, we have provided a solution for the physical (embedded) memory

binding in FPGAs, which is an emerging problem in hardware due to the significant

increase in the amount of embedded memories in FPGAs. Moreover, today’s FPGAs

offer their embedded memories in a variety of capacities and a set of configurations.

Therefore, it is essential to automate the process of physical memory binding in

FPGAs to enable the optimization of the required resources (embedded memories

and logic cells) to bind a data memory in a FPGA, besides saving engineering time.

The introduced CAD tool is able to manage the complexity of a problem with

several data memories and different types of embedded memories with different ca-

pacities and configuration sets. At the beginning, we designed and developed an exact

solution algorithm using a branching strategy to search the entire solution space of

the problem. The run-time of our exact algorithm was not acceptable, so we devel-

oped a heuristic method with an acceptable run-time. However, the optimality of the

calculated solution was not guaranteed anymore.

The experimental results show that the in many cases the heuristic approach

100



M.A.Sc. Thesis - Kaveh Ghorbani Elizeh McMaster - Electrical & Computer Engineering

achieves an acceptable solution compared to the exact solution of the problem in a

fraction of the run-time of the exact method. Moreover, run-time aside, in some cases

it can outperform a manual design due to its resource usage.

5.1 Future Work

The first part which requires more study and research in this project is the set of

decisions in the heuristic approach, which can be made more efficient. The increase

of the performance of the heuristic approach is one of the most important open

problems in the way of making this research more applicable.

As illustrated in the case study in section 4.1, such a tool which automates the

memory architecture design for FPGAs, can be useful in the CAD tools for special

cases of architectural synthesis, such as FEM analysis accelerators. This is because

the CAD tool can calculate the required amount of on-chip memory elements for

each candidate architecture and thereby tune the amount of parallelism and the size

of processing cores with respect to the available memory resources. This a direction

that clearly justifies the importance of such a tool, and requires more research.

Also, we can enable the algorithm to work with irregular configurations of the

embedded memories too. However, the use of irregular configurations should be

optional because they reduce the reliability of the design due to use of the parity bits

as data bits. Moreover, the tool can become more advanced if it takes the number of

ports of each embedded memory and the types of ports into account, and decide on

the type of required embedded memories for each data memory based on the number

and the type of ports as well.

In the current solution we map each virtual memory to a number of physical
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memories. However, in some cases it is possible to map two or more virtual memories

to one physical memory, assuming that the physical memory is large enough to ac-

commodate all virtual memories and more importantly the virtual memories are not

accessed at the same time more than the number of ports of the physical memory.

Therefore, we have to deal with dependencies in the high level algorithm which we

want to implement in hardware. We can even make the problem more general by

mapping ‘n’ virtual memories to ‘m’ physical memories.

Finally, we can consider the timing properties of the physical memories to sup-

port working with memories with different access times, so the tool will be able to

handle working with different types of physical memories with different access times

at the same time, and account for various clock cycles to access different memories.

This can improve the overall clock speed of the design and consequently improve the

performance of the design. Moreover, by having this ability, we can expand the tool

to work on off-chip memories as well.
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