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Abstract—In this paper, high-frequency (HF) AC and noise ulator, so it is difficult to judge its validity of the noise model
modeling of MOSFETSs for radio frequency (RF) integrated circuit  after implementing it in a circuit simulator. In this paper, we
(IC) design is discussed. A subcircuit RF model incorporating the discuss the details of the modeling of the parasitic components,

HF effects of parasitics is presented. This model is compared with . R .
the measured data for bothy parameter and fr characteristics. 2"d Present a simple subcircuit MOSFET model for RF appli-

Good model accuracy is achieved against measurements for acations. The model is accuratejrparameters (up to thg/2 f-
0.25 pm RF CMOS technology. The HF noise predictivity of frequency range) anflr characteristics in the device geometry
the model is also examined with measured data. Furthermore, a range for RF ICs. The Nonquasistatic (NQS) behavior of the
methodology to extract the channel thermal noise of MOSFETS ,q4e| has also been verified with measurements. Further, we
from HF noise measurements is presented. By using the extracted ine the HE noi f fth beircuit RE del
channel thermal noise, any thermal noise models can be verified e>§am|ne e noise performance of the subcircul mode
directly. Several noise models including the RF model discussed in With measured data and present a methodology to extract the
this paper have been examined, and the results show that the RF channel thermal noise from the measured data, which is very
model can predict the channel thermal noise better than the other important in HF noise modeling as it provides a way to check
models. the validity and accuracy of a noise model. With the extracted
Index Terms—Circuit simulation, high-frequency noise mod- channel thermal noise data, the noise characteristics of several

eling, radio frequency (RF) integrated circuit (IC) design, RF  noise models including the RF model discussed in this paper are
MOSFET modeling. examined.

|. INTRODUCTION Il. AC SMALL SIGNAL MODELING AT RF

ITH the fast growth of radio frequency (RF) wirelessA. Equivalent Circuit of the AC Model and the Components
| tk:: ommu?lé?\zlglﬂss(;narket, .RI;?:es_lgn('etrs k}l\ave betgunté) €XWith the parasitic components at the gate, source, drain and
plore the use o evices in cireurts. Accurate an %ﬁbstrate, an RF model based on the subcircuit approach is given
ficient RF MOSFET models are required. It has been kno R Fig. 1(a). The core intrinsic model can be any MOSFET

that a device model emphasizing on low frequency applicatio

: X i del that is suitable for analog applications, and in this paper,
cannoF be used directly in RF [1]. Compared with the MOSFE| is BSIM3v3 [7]. The equivalent circuit (EC) of the RF model
modeling at low frequency, compact RF models are difficult t

develon. M . rcuit desi table-look 2 shown in Fig. 1(b). Even though it is not very precise to rep-
evelop. Many miCrowave Circuit designers use a table-l00K-ye o i 1he subcircuit model in Fig. 1(a) by the EC in Fig. 1(b), it

approach based on measurements. However, this approacncé?fapproximately describe the HF characteristics of the subcir-

quires a large database obtaln_ed from numerous deylce M&ifli model in saturation region and simplify the model analysis
surements, and becomes questionable when used to smulat% € cilitate the model parameter extraction

statistical behavior of the RF circuits or to perform predictive At dc and low frequency, the gate resistange consists

sw;ulatlot?s for tioﬁe ch)cuns beforte ge:vmg jII:Ct%n' RF ‘ mainly of the polysilicon sheet resistance. At HF, however, two
ecently, work has been reported to modef the PeM G ditional physical effects will affect the effective gate resis-

mance of submlgron M.OS devices [1]_[5.]' Most .Of them Afance. Oneis the gate-distributed effect (GDE), and another one
focused on the discussion of the HF equivalent circuit and the

o . the nonquasistatic effect (NQS) in the channel [6], [8].
fitting of the s- or y-parameters. Some of them discussed theA simple expression of gate resistange has been used to
HF noise characteristics [6]. But the results of the noise param . iate gate resistance with the influence of GDE

eters are from direct calculations of the equivalent circuits in-

stead of from simulations of the compact model in a circuit sim-
_ Bgsu W Wy
NeLp \'°

RG,poly - xt T 7 (1)
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whereR¢ o1y iS the distributed gate electrode resistance from
the polysilicon gate material and is given by (1), &dd s IS
the NQS distributed channel resistance seen from the gate and
is a function of both biases and geometry [6], [8].

A R model with the consideration of NQS effect has been
reported [6]. However, the following expression can be used to
obtain theR¢ nqs approximately in strong inversion regime

i

RG,nqs = G_ (3)

Core/Intrinsic MOSFET

l”*m

where G,,, is the device transconductance, afds a fitting
parameter with a typical value around 0.2.

The source/drain resistanc&s, and Rs without including
any bias dependence can be described by

Tdw
Rp =R 4a
~ G D Do + N W, (4a)
”
R, = R+ X 4b
N, 0+ N (4b)
. whererq,, andr,,, are the parasitic drain and source resistances
[ Gi where unit widthR o andR s are to account for the part of the
Con :E Ces £ Caop series resistances without the width dependence.
e Gm(VGi-Vsi) It has been known that the source/drain resistances are bias
B — @ dependent. However, (4) can work reasonably well in RF MOS-
St | Gmb(VeiVsi)| Di D FETs, because the LDD region in devices (for exgmple, ip a0.18
o—" \N—) wm or even more advanced technology) has a high doping con-
Rp centration. Thus, the bias dependencéigf and Rs becomes
weaker compared with an older technology with lighter LDD
doping.

The influence of the substrate resistance is usually ignored in
compact models for low frequency application. However, at HF,
the signal at the drain couples to the source and bulk terminals
through the source/drain junction capacitances and the substrate
resistance. The substrate resistance influences mainly the output
characteristics, and can contribute as much as 20% or more of
the total output admittance [10].

Fig. 1. (a) Schematic of the subcircuit model for a RF MOSEFT .It has been known that th? S_UbStrate components become dis-
and (b) an equivalent circuit of the subcircuit RF model in saturatioffibuted at HF [1]. Although it is always desirable to have a de-
regime. Cap =  Copp + Cepi and Cos = Case + Cosi,  tailed distributed RC network to account for the contribution of
"C"Ci;ezccciit e Cf"fl“jtg-(f:ﬁrff“‘_ - fi"D{*‘“““S”-S*““‘lmd and  he substrate components, it is too complex to be implemented

: T mm———— in a compact model. A good compromise is to use a lumped RC

network, accurate in the required operation frequency range, to

For the devices with NQS effects, gate resistance and indégmulate the contribution of the substrate components.
tance with additional bias and geometry dependences are introa simple equivalent circuit for the substrate network shown in
duced [6], [7], [9]. However, we do not discuss the influence dfig. 1 has been used to analyze the HF substrate-coupling-effect
the gate inductance in this paper since the frequency rangg9gE) and the characteristics of substrate resistance at HF [11].
much lower than that at which the influence of the gate indugyen though a simpler substrate network has been reported, it is
tance becomes significant. found that the three-resistor substrate network can ensure better

It has been proposed that an additional resistive componeniidel accuracy in a frequency range up to 10 GHz.
the gate should be added to represent the channel distributed R€enerally, assuming the device is symmetric between source
effect [6]. When a MOSFET operates at high frequencies, th@d drain and there is no difference between the outer and inner

contribution to the effective gate resistance is not only from tkgurce/drain regions in a multifinger device, we have
physical gate electrode resistance but also from the distributed

channel resistance, which can be “seen” by the signal applied to Rpsp = Tash Ly (5)
the gate. Thus, the effectivé; consists of two parts N;W;

wherery, is the sheet resistance in the substrate between the
Rg = Rg poly + B ngs (2) source and drain.
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According to the device layout used in this pap@sg and The parameters for the components in the RF model can
Rppy are functions of channel width of the device, as describée extracted directly from the measured HF data according

approximately by the following equations: to the previous equations [4], [10], [11]. For devices with
B ag T (6a) short channel lengths, & component without additional
DB~ W bias and geometry dependence as given in (1) can be used to
Ren ng 1obW (6b) simulate the HF characteristics with sufficient accuracy. Since
SB W, the core model has included the overlap capacitance with bias

where rqye and ru,., are the substrate resistances péfePendence,we do notincludgsp/Capr in the RF model.
unit-channel-width. The model has been examined with the devices of different
Some bias dependence of the substrate resistances had §6@etries at different bias conditions. The devices are fabri-
expected based on the fact that the depletion regions below §REed With a 0.25:im RF CMOS technology. Multifinger de-
gate and surrounding the source and drain diffusions may va#§eS With lengthsl; from 0.36,m to 1.36um and width per
at different gate and drain bias conditions [10]. However, it h489€r (Wy) from 2.5 um to 12 um are characterized with a
been found that the bias dependence of the substrate resistahtted1€asurement system consisting of a HP8510 vector network
is actually very weak in the devices studied in this paper, aRgalyzer and a HP4142 |-V testék-parameters are measured
the above simple substrate resistance network is accurate uftg € then converted i6-parameters to facilitate the param-
10 GHz [10], [11]. eter extraction. The measured raw data are de-emb_edded with a
The parasitic capacitances in a MOSFET contain differefjfO-SteP (open and short) procedure to remove the influence of
components at the gate, the source, the drain and the substfafeParasitics from the pads [12]. The model parameters for the
The core model has contained most of these capacitive cdhirinsic devices as well as for the series source/drain resistances
ponents. However, additional components, sucasp and are extracted from the measured dc data. Other parameters for

Casp obtained from the difference between the capacitanc$ components such d&;, ipg, fisp etc. and some param-
extracted from the measureebarameters and the intrinsic catters for the capacitances are extracted from the measured HF
pacitances simulated with the model can be added as show/fl§ AC data. _ ,

Fig. 1 in case the RF model cannot meet the accuracy require] "€ Simulations with the RF model show satisfactory agree-
ments. According to the definition @ ¢;np andCasp, we can ment to experiments. As examplt_as_, Fig. 2 shows the compar-
consider these capacitances as overlap capacitances if thdS? Of they-parameter characteristics between measurements
trinsic capacitance model is accurate enough. However in soff¥¥! the model for devices with different geometried/at =
casesCapr andCesp should not be called as overlap capaci¥? = 1 V. A good match between the model and data demon-

tances since they may contain part of the intrinsic capacitanGs&tes that the RF model is accurate up to 10 GHz. Fig. 3 gives
if the intrinsic capacitances are not properly modeled. the comparison of-I, characteristics between the model and

The substrate capacitan€e,,, existing at high frequencies m_easurements for several devices. Together with the plots in

to describe the capacitive effect in the substrate material, is &id- 2 it demonstrates that the RF model can predict the HF
other extrinsic capacitance that should be considered in an REaracteristics of the devices with different geometries at dif-

model. We do notinclude this substrate capacitance in the abdgkeNt Piases.

substrate RC network. It does not influence the model accuragy .

significantly to describe the device HF behavior up to 10 GH8§' Modeling of NQS Effects _ .
However,C..y, is important in a RF model when the device op- It has been known that NQS effect should be included in a

erates at frequencies much higher than 10 GHz. RF model to accurately describe the HF characteristics of de-
vices at HF. Most MOSFET models available in circuit simu-
B. Model Parameter Extraction and Simulations lators use the quasistatic (QS) approximation. In a QS model,

Based on the equivalent circuit in Fig. 1(b), the following apt_he channel charge is assumed to be a unique function of the in-

proximate equations can be obtained from a detajigaram- stantaneous biases, i.e., the charge has to respond to a change
eter analyses: in voltages with infinite speed. Thus, the finite charging time of

the carriers in the inversion layer is ignored. In reality, the car-

y11 ~ W’ (CéoRe + CdsRs + CépRp) +jwCac  (7a) riers in the channel do not respond to the signal immediately,
Y12 = —w?CaaCapRa — jwCap (7b) and hence, the channel charge is not a unique function of the
yor % Gy — w2 CaaCapRe — jw(Cap + GmBRaCac) |nsta|_1taneous terminal voltages (qu§5|s§at|c) put a function of
i ) the history of the voltages (non-quasistatic). This problem may

(70) become pronounced in RF applications, where the input signals

Yoy A }fDB(R;B - RESB) (wChp)? + Ra(wCan)? may have rise or fgll _times comparable to, or even smaller thgn,
DB 1 fisB + LiDsB the channel transit time. Because the carriers in these devices

+ 1 + jw(Can + Crp) (7d) cannot foI_Iow the changes o_f the applied signal, the Qs mgde!s

Rps may give inaccurate simulation results that cannot guide circuit

whereys, is theyss without the influence oR . The assump- design.

tions ofw?(Cgs + Cap)? R < 1and(wCep)?’RE < 1are  The NQS effect can be modeled with different approaches
used in the derivation, which are generally valid up to 10 GHnr RF applications: (aRgapproach in which a bias-dependent
[4], [10]. gate resistance is introduced to account for the distributed ef-
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Fig. 2. Comparison of simulated and measwegarameters (&)11; (b) y12; () y21; and (d)yz (both real part and imaginary part) versus frequendyat =
Vbs = 1V for several devices.

fects from the channel resistance as discussed earlier [6], digtributed channel has been represented approximately by a
R; approach in which a resistand®, (as used in modeling simple RC network that retains the lowest frequency pole of the
a MESFET or HEMT) is introduced [13], (c) transadmittanceriginal RC network [7]. In Fig. 4, simulation results of the RF
approach in which a voltage-control-current-source (VCCS) isodel with and without NQS effects are shown with a compar-
connected in parallel to the intrinsic capacitances and transcgen to the measured data. Without including the NQS effect,
ductances to model the NQS effect[10], [14], and (d) core modblke model cannot predict the measuggd at higher frequen-
approach in which the NQS effect can be modeled in the caries, while the model with NQS effect can simulate the mea-
intrinsic model [7]. It should be pointed out that all of these apsured data very well. The inclusion of the NQS effect would
proaches would have to deal with complex implementation ibe a desirable feature for a RF model even though it remains
sues. a question whether the devices in RF circuits for small-signal
Both R and R; approaches will introduce additional resisapplications will operate in the frequency region at which the
tance components in the model besides the existing physidalices show significant NQS effects.
gate and channel resistances, so the noise characteristics of the
model using eitheR; or R; approach need to be examined.
Ideally, the NQS effect should be included in the core intrinsic
model if the model can predict both NQS and noise character-n this section, we study thermal noise characteristics of the
istics without a large penalty in the model implementation arehrlier subcircuit RF model that uses the built-in noise models in
simulation efficiency. the core model [7]. And also, we discuss a methodology of ex-
In this paper, the NQS model is contained in the core mod#iacting the channel thermal noise from measured data and use
The NQS model utilized a ElImore’s approach, in which the Rihe extracted thermal noise to validate different noise models.

Ill. HF NOISE MODELING
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predict well the HF noise characteristics, the accuracy in both dc
and AC fittings has to be ensured while the noise model itself is
developed with the inclusion of important physical effects such
as velocity saturation (VS) and hot carrier effects (HCE). In this
RF model, the influence of the VS effect has been included in
the core model; however, the contribution of the HCE to thermal
noise is not considered even though the influence of impact ion-
ization (and hence HCE) to the channel conductance has been
incorporated in the dc model [7].

In Fig. 6, a discrepancy iR, characteristics between the
model and the measured datdat; = 2V has been found. Fur-
ther investigations in both noise model and parameter extraction
are needed to explore the reason. The inaccuracy in either dc
or AC models can result in this discrepancy. However obvious
disagreement in the simulated and measured imaginary part of
y12 has been found at that bias condition so the discrepancy in
R,, characteristics may be caused by the inaccuracy of the ca-

Fig. 3. Comparison off;y—I, characteristics between the model andpacitance model in that operation regime since the contribution
measurements for different devices.

A

AAA
An
AAA

W=10x15um
L=1.35um

AN

AAA
AAA

Symbols: Measured data
Solid lines: Model with NQS
Dotted lines: Mode! without NQS

0.010
0 0.005 4
(0]

5
& 0.000 Ha,
¢

&

| -0.005-

()}
©
£
S 00104
c
©

“I‘ 20.015
o)
o

0.020

2

4

6
Frequency (GHz)

8

12

from the capacitive components i), becomes comparable to
that from the transconductance at HF [15].

B. Direct Extraction of Channel Thermal Noise From
Measured Data

As shown in Fig. 5, different noise sources associated with
terminal resistances and channel resistance exist in a MOSFET.
However, the noise generated from the channel resistance will
play an increasingly important rule in the overall noise per-
formance of the circuits at RF. Therefore, an accurate model
for the channel thermal noise in a MOSFET is crucial for RF
CMOS IC design. As we demonstrated in Fig. 6, models of
the channel thermal noise are confirmed by the minimum noise
figure (NF,,;,) of devices, which is calculated based on the
measured thermal noise and the other simulated noise param-
eters with a help of a small signal model including all the noise

Fig. 4. y;1 comparison of models with and without NQS effect and measureshurces in the circuit simulator. However, the accuracy of the
data for a NMOSFET with strong NQS effect.

A. Experimental Verification of Noise Predictivity of the RF

Model

small-signal model, the values of model parameters used in the
simulation and the noise model itself will affect the simulated

noise parameters. These factors make the verification of a noise
model more difficult, even when accurate noise parameters are

The HF noise sources in the RF model discussed above jeasured. Therefore, obtaining the channel thermal noise of
clude the contributions from the terminal resistances. Fig.M\OSFETSs directly from RF noise measurements and using it
shows a complete EC of the RF model with HF noise conttie verify the noise model are desirable in noise modeling.
butions. With the extracted parameters from the measured datg has been known that a noisy two-port may be represented
for a 0.25,m RF CMOS technology, we verify the noise charpy a noise-free two-port and two noise current sources, one at
acteristics of the RF model discussed above. The four noise g#e input port; ) and the other at the output pg#t). From the
rameters calculated by the correlation matrix technique (CMpisy two-port network theory, the power spectral density,of
[15] from the simulated noise characteristics are given in Fig.dan be obtained from [16]

against the measured data for a 0,38 device at different bias
conditions. In Fig. 6, the solid lines represent the simulation re-
sults of the RF model, and the symbols with solid squares and
open circles are the measured datalfgg = 1 VandVps =1

Jia? _
s ®)

wherek is the Boltzmann’s constarit is the absolute temper-

—2
[ul” - [ya1|* = 4T Ry |yor |*

V and forVgs = 2 V and Vps = 1V, respectively. While ature,y,; is the transadmittance from port 1 to port 2 of the
the RF model with extracted parameters fits accurately the meaise-free two-port, and,, is the equivalent noise resistance,
suredy-parameters data as shown in previous section, it can algbich is a resistance cascaded at the input port that will produce
predict the HF noise characteristics of the device as giventime same amount of noise power spectral density @oes at

Fig. 6. It has been found that the transconductance and tranibee output port.

pacitances are the key components determining the HF noisdt is too complex to obtain any analytical solutions for the
characteristics besides the resistive components. For a modeldse sources in the equivalent circuit shown in Fig. 5. How-
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Fig. 5.  An equivalent circuit to illustrate the noise sources in a MOSFET.
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Fig. 6. (a) Comparisons of measured data for minimum noise fiylitg ;. with simulations at different bias conditions. Th& is the finger number of each

device. The channel width per finger is 2h and channel length is 0.36n; (b) comparisons of measured data for the magnitude of the optimized source reflection
coefficientG,,¢ with simulations at different bias conditions; (c) comparisons of measured data for the phase of the optimized source reflection £ggfficient
with simulations at different bias conditions; and (d) comparisons of measured data for the noise resistance normali2zed,tovith simulations at different

bias conditions.

ever, assuming that all the capacitors in Fig. 5 are open-dimately zero at low frequencies (above the corner frequency
cuited, that is, all the admittances of the capacitors are appra%-the flicker noise), the equivalent noise model can be sim-
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tance(R..1,), and the channel thermal noigg), respectively. 107 ' T ; T , T : 3

By calculating the noise contribution from each noise sourct

analytically according to (8), we have the following expressions

for iG out) iSouta iD outs andid out

|iG 011t|2 < Grn,RDS )2
———— =4kTR
Af “\ GmRsRps + Rp + Rs + Rps

(10a)

|'l:D0ut|2 :4I€TR < 1 )2
Af P\ G,nRsRps + Rp + Rs + Rps

(10b)
|iSout|2 < 1 + GanDs )2
——— =4kTR
Af S\ GmRsEps + Rp + Rs + Rps
(10c)
|id out, |2 12 < RDS ) 2
= | 10d
Af ial GnRsRps+ Rp + Rs + Rps (10d)

Substitutingig outs 75 outs ¢ D out» aANdig oyt iN (9), the power

Frequency (GHz)

Fig. 8. Extraction ofR,. from the measured characteristics of equivalent
noise resistance versus frequency.

derivation earlier, the noise contribution from the substrate resis-
tances is ignored, which is acceptable because of the “open-like”
junction capacitances at dc or low frequency and much lower
bulk transconductancér,,,;, compared with the transconduc-
tanceG,,. Also, the induced gate noigé,) and its correlation
with the channel thermal noise are negligible at low frequencies
and are therefore neglected in above derivations.

In order to obtain the model element values in (11), values
of parameterdis, Rs, Rp, G, and Rpg are extracted from
the measured-parameters. Furthermoré&,,, in (11) can be
extracted by extrapolating th,, versus frequency character-
istics shown in Fig. 8 at low frequency. In Fig. 8, it shows that
R,, = 8012 for this bias condition. Based on these extracted pa-

spectral density of the channel thermal noise in MOSFETs ceameters and (11), the channel thermal noise can be calculated

be extracted according to the following equation:

2 m
lia]?2 = 4T [(Rno — Rg — Rs)G2, — Gm I

Rpg
_Bp+Rs

(11)
R

where R, is the equivalent noise resistance extrapolated
dc or low frequencies from the measured equivalent noise

from the measured HF noise characteristics. Together with the
extracted HF AC noise parameters, it can be used to verify the
noise predictive capability of models available in circuit simu-
lation.

C. Verification of Different Noise Models

The noise characteristics of several noise models including
the subcircuit RF model discussed above are verified with
the extracted channel thermal noise with the discussed

sistanceR,, versus frequency characteristics. To facilitate themethodology to explore the physical nature and accuracy of
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presented. The model has been verified by high frequency mea-
surements. Good model accuracy at different bias conditions has
been found for devices with different channel lengths, widths
and fingers. The modeling approaches of NQS effects have been
discussed. The discussed RF model can predicgtheharac-
teristics of devices with significant NQS effect.

The HF noise modeling is also discussed. The predictivity
of HF noise characteristics of the RF model has been exam-
ined with the measured data. It shows that the model can pre-
dict the HF noise characteristics while the model with extracted
parameters can simulate accurately the HF AC parameters. A
methodology of extracting the channel thermal noise parameters
is introduced, with which the validity of channel thermal noise
model in a RF model can be examined. The results of several

. . . . no{se models are shown with the comparisons to the measured
Fig. 9. Power spectral densities of channel thermal noise versus bias curren

of a 0.36;:m n-channel MOSFET. They are extracted from the measured d&l@ta. The subcircuit RF model gives better prediction of HF
and calculated from different channel thermal noise models. channel noise characteristics. The concept of the induced gate

noise is briefly introduced without further theoretical analysis

the models. Fig. 9 shows the curves of the channel thernd)d experimental investigation. It is still an issue to model the
noise versus bias current. from the measured data. and sipsluced gate noise, the correlation with channel thermal noise

N=10
W=12um
L=0.36ym
V=tV

Extracted from measured data

30 Subcireuit RF modet

254

204

154

1.0

i? (102 Amp?Hz)

0.5

0.04

15 20
log (MA)

6.0 1.0 35

ulations of the RF model and several other noise modef¥)d its influence to the circuits at RF.

It shows that the calculated channel thermal noise based
on the equation:? 8kT Gy /3,42 8kTGqs/3, and

i3 = 8kT(G, + Gus)/3, Where Gy is the channel con-
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