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Abstract—The maximum-likelihood (ML) multiuser detector  problem. The ML detection (MLD) problem can be solved by
is well known to exhibit better bit-error-rate (BER) performance  an exhaustive search in which the log likelihood function is
than many other multiuser detectors. Unfortunately, ML detection oy 5luated for all possible combinations of the data symbols.
(MLD) is a nondeterministic polynomial-time hard (NP-hard) ;. ever exhaustive search is prohibitive for a large number

problem, for which there is no known algorithm that can find the . . . . .
optimal solution with polynomial-time complexity (in the number of users because of its exponentially increasing computational

of users). In this paper, a polynomial-time approximation method complexity. Hence, it would be desirable if there were algo-
called semi-definite (SD) relaxation is applied to the MLD problem rithms that could efficiently find the (globally optimal) MLD
with antipodal data transmission. SD relaxation is an accurate solution. It is known that such MLD algorithms exist if the
approximation method for certain NP-hard problems. The SD  gjgnal correlation matrix exhibits some special structure. Two
relaxation ML (SDR-ML) detector is efficient in that its com-  gyr)0trg| constraints that are known to lead to efficient MLD

plexity is of the order of K35, where K is the number of users. : . . ) : L
We illustrate the potential of the SDR-ML detector by showing solutions are i) a band-diagonal signal correlation matrix with a

that some existing detectors, such as the decorrelator and the Small number of nonzero diagonals [1]-[3] and ii) a nonpositive
linear-minimum-mean-square-error detector, can be interpreted cross-correlation between all pairs of signature waveforms
as degenerate forms of the SDR-ML detector. Simulation results [4]. However, these structural constraints are rather restrictive
indicate that the BER performance of the SDR-ML detector is and are satisfied only in some special scenarios of multiuser
better than that of these existing detectors and is close to that of communications. In fact, for an arbitrary signal correlation
the true ML detector, even when the cross-correlations between matrix. it is unlikel that'an efficient MLD algorithm exists
users are strong or the near-far effect is significant. ’ y . . 9
because the MLD problem in this general case has been shown
Index Terms—Maximum likelihood detection, multiuser detec- to pe a nondeterministic polynomial-time hard (NP-hard)
tion, relaxation methods, semi-definite programming. problem [5], which implies that there is no known algorithm
that can solve the MLD problem with polynomial complexity
|. INTRODUCTION in the number of Use'rs.. . - . '
- . _ Because of the intrinsic difficulty in solving the MLD
’\rl] colqe_dmsmn mu|t|p]!e access _(CDhMA)' ?_ major faC]EOEroblem, there has been much interest in the development of
that |m|t3 sbystehm per orrﬂance 'f t ef nr:u tiuser Interfely,niimal but computationally efficient ML detectors. A tree
encefcause ?’,t € né)nort.ogonallty of the ufselr S'%”?tlé@arch method has been proposed to perform an incomplete
wavel;or_ms. hMu tlftfjser efter(]:_tmn [Il] IS a pov¥er ul too ?jrsearch for the MLD solution with limited complexity [6]. Mul-
com atmg(; ede ects of this mhu tiuser mterlgkrell_‘\hce.dUn f5tage detection [7], the coordinate ascent algorithm [8], and
some standard assumptions, the maximum-likelihood (Mi}e eynectation-maximization (EM) approach [9] are methods
multiuser detector is optimum in the sense that it provides the \hich the detected symbols are iteratively updated in an
minimum error probab|I|ty|nJon_1tIy detecting the data symbol_ ttempt to increase the log likelihood function. These iterative
of all users. Unfortlfnatelya'? |rr|1plemebnt the.I\/IIL detector, ifyathods are similar in that they perform some form of interfer-
Is necessary to solve a difficult combinatorial optimizatiog,e cancellation. The drawback of interference cancellation
is that if the estimation of the interference is incorrect, the
interference may be aggravated by the interference-canceling
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quadratic-programming (QP) problem [11] and will showdetection problem of synchronous CDMA signals over one
how this algorithm can be applied to the MLD problem wittsymbol period{sx(¢)} is defined to be a set of symbol-syn-
anti-podal data transmission. There are three advantageslaionous spreading-code waveforms
employing SD relaxation. ot
1) The SD relaxation algorithm is based on solving a convex _ ‘ .
optimization problem. Hence, this method does not suffer swlt) = Z cuitp(t = ilp) 2)
from local maxima.
2) The relaxed problem is a semi-definite programmingf duration7}, where
problem, which is known to be efficiently solvable [12]. P number of chips per symbol;
3) The SD relaxation algorithm has a theoretical guaranteeZ, = 7, /P chip duration;
that the approximation accuracy is, at worst, moderate{cz; f:ol spreading-code sequence for #ih user;
[11]. Moreover, the performance of this algorithm in prac- (¢) self-orthogonal chip waveform over the in-
tice is substantially better than that of the worst case. tervalZ},.

In addition to SD relaxation, we also consider two other relax- The purpose of multiuser detection is to detét} given
ation methods that have recently been applied to multiuser dlee observed signait). The ML detector for such a received
tection [13], [14], namely, unconstrained relaxation and boursignal is optimum in that the probability of incorrectly detecting
relaxation. These two relaxation algorithms are related to some= [b1, b2, ..., bx]? is minimized, under the following stan-
existing detectors, such as the well-known decorrelating aderd assumptions.
linear-minimum-mean-square-error (LMMSE) detectors, and a j) The sets{s;(¢)} and{£}} are known.
modified form of the space-alternating generalized expectation-jjy The pits &, are independent and identically distributed
maximization (SAGE) detector [9]. We will show that both the (i.i.d.) and equiprobable.
unconstrained and bound relaxation methods can be considm@(
to be further relaxations of the SD relaxation method. This result
suggests that the SD relaxation ML (SDR-ML) detector should by =arg max  J(b) (3)
perform better than those existing detectors. This viewpoint will be{-1,+1}%
be supported by our simulation results for synchronous CDMﬁ/here
where the bit error rate (BER) performance of the SDR-ML de-
tector is shown to be better than that of other suboptimal detec- J(b) = 2bT Ay — bTHb 4)
tors including the decorrelator, the LMMSE detector, and the
SAGE detectors. Our simulation results will also show that the an objective function proportional to the log likelihood func-
SDR-ML detector yields a BER performance close to that ¢bn. Here, thekth element of the vectay is given by
the true ML detector, even when the cross-correlations between
users are strong or the near-far effect is significant. Y = / r(t)si(t)dt (5)

i

=0

imum likelihood detection (MLD) can be formulated as [1]

[I. PROBLEM STATEMENT and is the sampled matched filter output for théh user,

Assuming antipodal data transmission, the received signal ff#d H = ARA is the signal correlation matrix, with
a multiuser communication system can be represented by the= diagvEy,- .-, VEx), and

following equation:
Ry = [ sttt ©®)
K 7
r(t) = Z V Eibisi(t) +o(t), teT (1)  Dbeing the(i, j)th element of normalized correlation matifi.
k=1 To perform MLD, it is necessary to solve the combinatorial op-

timization problem in (3). As pointed out in Section I, Problem

where : . . .
_ . . : (3) can be solved using an exhaustive search, in which the MLD
br e {-1,+1} |nf0r.mat|on symbol transmitted bjth ) o is found by evaluating(b) for all b € {-1,1}%.
user, H th lexity of the exhausti ahfg™) and
sk () unit-energy waveform carrying the infor- owever, the complexity o fhe exhaustive seara { )a_tn. '
mation svmbol of thé:th user- thus, is prohibitive for largds. In fact, for an arbitraryH, it is
B receivedysi nal enerav for th”ﬁh trans- unlikely that the MLD problem can be efficiently solved (in the
k mitted wavgform' oy sense of polynomial-time complexity i) because Problem
v(t) zero-mean additive white Gaussian noisgs) 's an NP-hard problem [5].
((jAe\:]VSGItDIJ)vV\;I;h two-sided power spectral I1l. SOME BASIC CONCEPTS OFRELAXATION
K number of users; In general, an optimization problem can be formulated as
T observation interval. .
We assume thaf{s,(¢)} is a set of nonorthogonal signals. I = es 7(x) )

Equation (1) can be considered to be a generic model fo
d ( ) 9 IiAn additional property of the ML detector is that for sufficiently high

man_y multiple signal detection problems, Such as the CDMéolgnal-to-noise ratios (SNRs), its bit error probability for any individaal
multiuser detection problems [1], [2]. In particular, for thepproaches the lowest achievable [1], [15, pp. 45-48].
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whereS, f(x), andf* represent the feasible set, the objective TABLE |
function, and the maximum objective value achieved by (7), re- SUMMARY OF THE SDR-ML DETECTOR
spectively. The following problem Step LSt n=K 1 1, and
* = max f(x 8 -H A
9" = max [(x) ® a-[ 2% 4]

is called a relaxation of (7) i c . The intent of relaxation
is to make the relaxed problem easier to solve than the original

problem by appropriately choosiéf However, the solution to X =arg max Trace(XQ)
the relaxed problem cannot be directly used as an approximate X i

solution to (7) because it may not liedh For this reason, some
approximation techniques are usually required to convert the

Step 2. Solve the semi-definite program

Step 3. Factorize X=VTV.
Step 4. Randomization: Denote the number of

relaxation solution to an approximate solution to the original randomizations by Myand.
problem. Hence, a relaxation algorithm should consist of two for i=1,2,.. . ,Mrana
steps Randomly generate a vector u;
v uniformly distributed on an n-
i) Solve the relaxed problem. dimensional unit sphere. Compute
i) Use an approximation algorithm to convert the relax- % = o(VTwy).
ation solution to an approximate solution to the original end; .
Choose X = X; as the approximation of
problem. x*, where j = arg  max *7Qx;.
.

1-esMrand

We now illustrate the principle of relaxation by a simple ex-
ample in which an unconstrained relaxation method [13], [14]
is applied to the MLD problem. For simplicity, we assulRdo
be of full rank. Now, if the alphabet constraintin (3) is removed,

Step 5. Take byor = Zx41] £1,...,28x |7 as
the approximate MLD solution.

we obtain the following relaxation: ation methods will be discussed in Section V. In this section,
the SD relaxation algorithm for the Boolean quadratic-program-
Jnax J(b). (9)  ming (QP) problem will be described. Then, by showing the link

) ) between the Boolean QP problem and the MLD problem, we
Problem (9) is a least-squares problem and, thus, is much eagjfr gescribe how the SD relaxation algorithm can be applied

to solve than the MLD problem. It can be shown that the solutiqg ine MLD problem. A summary of the SDR-ML detector is
to (9) isH™' Ay [16]. Denote the approximate MLD 30|Uti0”provided in Table I.

by byg. To obtainbyg, we can apply an element-by-element
threshold decision to the solutionto (9), i.e., choia_Sle,k =—1 A. Semi-Definite Relaxation
if H 1Ayl <0, and@UR,k = 1 otherwise. In fact, this relax-
ation method is closely related to one commonly known subop-
timal detector, namely, the decorrelator. This will be elaborated max  x' Qx (11)
in Section V. bty

We see that the maximum objective value achieved by tM&1ereQ can be any symmetric matrix. To present SD relax-
relaxed problem provides an upper bound on the maximum gBion, we consider a reformulation of the Boolean QP problem.
jective value achieved by the original problem, i.gt, < g*. Sincex’Qx = Tracgxx’'Q), Problem (11) is equivalent to
Hence, if the gag™ — f* is reduced, it is possible that the rethe following problem:
!axation solution can be made closer to th_e solution Qf the orig- max TraceXQ)
inal problem, and a more accurate approximate solution may be
obtained. Similarly, if we have another relaxation

We consider the followinggoolean QP problem

st.X =xx, xeR"”

X”‘Il, i:l,...,n. (12)

h* =max f(x), SCV (10) . o . ) )
xeV The constrainfX = xx” implies thatX is symmetric, posi-

andh* provides a tighter upper bound thah (i.e., h* < ¢*), tive semi-definite (PSD), and of rank 1. Due to the constraint
then it is expected that relaxation (10) should lead to a bet®r= >_<XT, Problem (12) is a nonconvex optimization problem.
approximation than relaxation (8). We say that one relaxatidtow, if the rank-1 constraint is removed from (12), we obtain
is tighter than another if the maximum objective value of thée following relaxed problem:
former is no greater than that of the latter. In designing a relax-

[ [ i imati o : ax TracdX
ation algorithm with good approximation accuracy, it is benefi- max TracgXQ)
cial to employ a tight relaxation. st.X >0
Xi=1 1=1,....n (13)

V. APPLICATION OF SD RELAXATION TO MLD whereX > 0 means thaKX is symmetric and PSD. Problem

Unlike the unconstrained relaxation method, which modifigd3) is known as aemi-definite programmingSDP) problem
the alphabet constraint in the MLD problem, the SD relaxatid2], and therefore, (13) is called &D relaxationof (11).
method considers an increase in problem dimensionality to pa advantage of using SD relaxation is that (13) is a convex
vide a tight relaxation. The relative tightness of various relaxptimization problem and, hence, does not suffer from local
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maxima. Furthermore, an efficient optimization algorithnthe scalar product;z; with the inner product! v;. Hence, it
based on interior-point methods has been developed for Hygpears that one should be able to approximatesing+v;. In
SDP problem in (13) [17], [18]. This algorithm is efficient inthe randomization process described belofis approximated
that for a given accuracy, a solution to (13) can be found in by making a vector-domain threshold decisionigrwith the
mostO(n3%) operations. The SD relaxation problem has ancutting hyperplane being randomly chosen. Defint be the

interesting property that will become important later. approximate solution generated by the randomization method.
Property 1 [11]: The solution to (13) is independent of theThe randomization consists of the following steps.
diagonal elements of}. 1) Randomly generate a cutting hyperplane that passes
This property can be verified by definimg = {P = P” ¢ through the origin. Such a hyperplane can be represented
R Py = 0,4=1,...,n} and letting by {w € R” : w’'u = 0}, whereu is a random vector
X=I+P, PeP. (14) uniformly distributed on am-dimensional unit sphere.

2) Fork =1,...,n,chooser;, = —1if v, lies “below” the
Substituting (14) into (13), the SD relaxation problem is refor- cutting hyperplane, i.e¥iu < 0, and choose;, = 1

mulated as otherwise.
Defines : R* — R™ to be a function where tha&h element of
max Z Qii + Z Z P Qij o(x)is 1if z; > 0 and—1 otherwise. We notice that the above
=1 j=1,i7#j two steps of the randomization can simply be expressed as
s.t.P eP .
I+P 0. (15) x=o(V'u). (18)

Obviously, the solution to the SD relaxation problem does nbtsually, to further improve the approximation quality, the ran-

depend on the diagonal elements(pf domization is repeated a number of times, and the randomized
solution yielding the largest objective function value is chosen

B. Approximate Boolean QP Solution via Randomization  as the approximate solution. This procedure is stated in Step 4

We have seen that by replacing the rank-1 constraint of Table I. Often, this randomization method can achieve an ac-
the original problem with a symmetric PSD constraint, Spurate approximation with a modest number of randomizations.
relaxation leads to an increase in problem dimension. Sinc@r example, in the application of CDMA multiuser detection,
the Origina| and relaxed prob]ems have different pr0b|emhiCh will be shown in Section VI, the number of randomiza-
dimensions, some special techniques are required to convertttigs required to achieve good BER performance is 10 to 20.
SD relaxation solution to an approximate Boolean QP solutiofe also point out that the randomization process (with a modest
A randomization method has been proposed for this conversig#mber of randomizations) is computationally efficient since its
process [10], [11]. To gain an intuitive understanding of th@peration count i) (n>Myana), Where Myanq stands for the
randomization, we consider alternative expressions of tAEmber of randomizations. In fact, the complexity of the ran-
Boolean QP and SD relaxation problems. The Boolean @®mization process (with modest..,q) is almost negligible

prob|em in (11) can be expressed as ComparEd with that of SOlVing the SDP prOblem.
As we point out in the following property, in some situations,
max Z Zx ;0 (16) it is sufficient to perform the randomization only once.
< gy -

Property 2: Let X = V'V € R™*" with V € R**", and

let u be a random vector uniformly distributed onasdimen-
Define x* to be the solution of (16). Notice thatx* is also  sjonal unit sphere. For any rankXL such thatX = xx”

the solution of (16) because bath and—x* achieve the same

’zljl

objective value. For the SD relaxation problem Yet= V'V, o(VIa) = +o(x) (29)
whereV = [vy,...,v,] is any square-root factor (e.g., the
Cholesky factor) oiX. SubstitutingX = VZV into (13), we holds with probability 1. _ _
obtain the following equivalent problem: Proof: SinceX = xx7’, its square-root factor is deter-
. mined as
T, .0..

2 2 v 4 V = [112. 227, .., 2] (20)
where]|-|| represents the 2-norm. Defideto be the solution of for someljz|| = 1. Assuming tha"u 7 0, we have
the SD relaxation problemin (13), and defive= [v1, ..., V,] T T
to be a square-root factor &. Then,V is the solution of the o(Viu) = o(z" ujo(x) (21)

equivalent problem in (17). Comparing (16) with (17), an in\7\/hereo—(z u) may either be 1 or1. To prove that (21) holds

teresting parallel can be observed: The increase in dimensiw&-h probability 1, we consider the probability thafu =
ality in the SD relaxation problem causes the replacement(ﬁ)fAccordlng to [10],u can be obtained by drawing an i.i.d.

2Interior-point algorithms are iterative algorithms that terminate once a préé@ussian random vector, followed by a normalization, i.e.,
specified accuracy has been reached. For the SDP in (13), the complexity per
iteration isO(n*) [17], [18], and for a given accuracy, the number of iterations u= w W~ N(O I) (22)
required is at most(n%-%). [lw]| ? ?
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The conditionz”u = 0 is equivalent ta”w = 0. Then, it can these two methods. Then, we will prove that both the uncon-

be easily shown that the probabiliff{z? w = 0] tends to zero, strained and bound relaxation methods are further relaxation of

and thus, (19) holds with probability 1. O the SD relaxation method, and therefore, it is expected that the
Applying Property 2 to the SD relaxation algorithm, we seBDR-ML detector should perform better than those existing de-

that if X is of rank 1, then, with probability 1, the approximateectors.

solution for any number of randomizations is equal to either the

sign of the dominant eigenvector &f or its negative version. A. Unconstrained Relaxation and Bound Relaxation

This special property will be useful in proving an important the- The unconstrained relaxation (UR) algorithm, which has been

orem in the next section. briefly described in Section I, is formulated as
Finally, we point out that the approximation accuracy of the
randomization method has been theoretically analyzed by Nes- bur = arg max .J(b) (26a)
terov [11]. It was shown that for a sufficient (yet finite) number R _beRE
of randomizations, the approximation accuracy of the random- bur = o(byr) (26b)

ization method is, at worst, moderate. However, as will be ap-

parent from the simulation results in Section VI, the SD relaXyhere .

ation algorithm often exhibits very good approximation accu- < (P) given by (4); _ _

racy in practice. Furthermore, the number of randomizations re-Pur approximate solution using UR;

quired to achieve good approximation accuracy is often much? : R” — R™ element-wise threshold decision function.

smaller than that suggested by Nesterov’s (worst-case) ananB_ is a loose relaxation since there is no restrictior_l on the pos-
sible values obyr . An ad hocmethod that may partially com-

C. SD Relaxation ML Detector pensate this problem is to add a penalty function to (26a):
To apply the SD relaxation algorithm to the MLD problem, S~ _ 2
the original MLD problem has to be rewritten in the same form bur = arg é2%§ 1(0) = bl 27)
as (11). Define a scalare {—1,1}. Sincecb € {—1, 1} for . _ _
anyb € {~1,1}%, (3) can be rewritten as where~||b||? is the penalty function, ang > 0 is a con-
stant. The reason for choosing such a penalty function is to
_ max J(b)= max . (23a) implicitly constrain the magnitude @&, while maintaining the
be{—1+1} P least-squares nature of the relaxed problem. Interestingly, the
J(cb) = max 2cbTAy — b Hb (23b) Penalized UR problem ir_1 (27)_ is still a rela_lxation of the MLD
bfe{{fiﬁf}}( problem. To illustrate this point, we consider a restriction of
(27), where the original feasible set is replaced by the alphabet
= max [bY{] -H oAy b set
be{-1,+1} K (Ay)T 0 C
ce{—1,+1} 5
(23c) pe X J(b) — ~llb[" (28)
Clearly, (23c) is equivalenTt to;he Boolean QP problem in (11gjearly, Problem (28) is an equivalent MLD problem because
wheren = K +1,x = [b" ¢|*, and ||b||2 is a constant for anlp € {—1,1}*. Thus, (27) is a relax-
“H A ation of the equivalent MLD problem in (28).
Q= [(Ay)T Oy} (24) As described in Section Ill, the major advantage of using UR

is the availability of a closed-form solution. Assumikb+ ~I
Let (b*, ¢*) be the optimal solution of (23a). Sinde,; and to be a full-rank matrix, the solution to (27) is given by [16]

c¢*b* attain the same maximum objective value in (23a) Bor = (H 4 A1)~ Ay 29)

by = ¢*b*. 25
Mt (23) and it can be shown that
Hence, we can use the SD relaxation algorithm described in pre- R 1
vious subsections to approximate the solution to (23c) and then bur = o((R+7A7")y). (30)

use the relationship in (25) to obtain an approximate MLD so- ) ]
lution. A summary of the SDR-ML detector is given in Table 170 S&€ how the penalized UR method is related to some of the

Finally, we conclude from previous subsections that the corfxisting suboptimal detectors, we consider the outputs of three
plexity of the SDR-ML detector i€©((K + 1)37) ~ O(K33). well-known linear detectors, viz. the matched filter detector, the
decorrelator, and the LMMSE detector, which are given, respec-

V. RELATIONSHIP OF SDR-ML DETECTOR TOOTHER tively, by
MULTIUSER DETECTORS

byr = U(Y) (31)
In this section, we will consider two other relaxation methods boe = o(R1y) (32)
called unconstrained relaxation and bound relaxation for the 1
MLD problem. It will be illustrated that some existing multiuser BraMsE = 0 <<R + AﬁA”) y> ) (33)
detectors can be viewed as approximate MLD algorithms using 2
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See [1] for the detailed derivations of the above detectors. BaGBR problem. By following the same procedure as described
cally, the matched filter detector is a single-user detector thatimsSection IV-C, (35) can be rewritten as

optimal in the absence of multiuser interference, whereas the
decorrelator and the LMMSE detector use different forms of h* = L max x'Qx
linear mapping to suppress the multiuser interference. R

%2 =
Comparing (30) with (31)—(33), the equivalence between the k™
UR detector and the linear detectors above can be clearly seen. = max TracgXQ)
If the UR problem is not penalized, i.ey, = 0, thenbyr = st.X =xx’
bpc. On the other hand, if is chosen to bV, /2 such that the X, <d* i=1,....K
influence of the penalty function to the UR problem is adjusted X oan =1 (36)
K+1,K+1 —

according to the noise power, thémm = BLMMSE. Finally,
if the UR problem is overpenalized such that> max Ex, wherex = [b? |7 with ¢ € {—1,1}, and
the approximate solutiobyr approaches((vA~—2)"ly) =
o(y) = bur. Thus, each of the linear detectors in (31)—(33) ~ | —(H+~I) Ay
can be viewed as approximate ML detectors under UR. Q= (Ay)* 0 |’
Next, we consider the bound relaxation (BR) method, which o ] ]
has been recently applied to multiuser detection in [13] and [14] the rank-1 constraint in (36) is replaced by a symmetric PSD
Instead of allowing the relaxation solution to lieft, the BR constraint, we obtain an SD relaxation of the GBR problem
method constrains the relaxation solution to lie withiK adi-
mensional cube. The BR algorithm is formulated as follows:

(37)

I* = max Tracd XQ)

st.X >0
bpr = arg max_J(b) (34a) Xu<d® i=1,....K
—1<b <1
X e Xiyi,41 =1 (38)
bpr = o(bpr)- (34b) _ _ o )
wherel* is the maximum objective value achieved by (38). Let
Bound relaxation has two advantages. X be the solution of (38), and lélcsr-spr be an approximate

MLD solution obtained from applying the randomization proce-

i) Itis tighter than the unpenalized UR method. ; ) < . .
i) The relaxed problem has a concave (quadratic) objeg:—”e in Section IV-B taX. We have the following equivalence

tive function and linear inequality constraints, and henc ,(_ar%rem. 1 The GBR brobl , by (3 dits SD
(34a) is a convex optimization problem [19]. eorem 1. 1he problem given by (35) and its re-

. L . . laxed version given by (38) are equivalent in that they achieve
There is an existing multiuser detector that is closely relat g y (38) d y

to the BR method. In [9], Nelson and Poor considered the. Same maximum objective value, i.e.,
SAGE algorithm as a method of suboptimally solving the W= (39)
MLD problem. It can be seen that one of the modified SAGE
detectors, namely, the SAGE detector with unit-clippesstep, Furthermore, iH++1I is positive definite, then with probability 1
actually uses a coordinate ascent method [8] to solve (34a) and . .
then takes the sign of the solution to (34a) as the approximate basr-spr = baBr (40)
MLD solution. (See [13] and [15, pp. 89-92] for details.)

for any number of randomizations.

B. Relative Tightness of Various Relaxation Methods Proof: We first prove (39) by showing* < I* andh™ >

[* The former is obvious since (38) is a relaxation of (35). To
We note that we can represent the UR and BR methods, pg%w the latter, we consider a reformulation of (38). Let

with and without a penalty function, by a generalized expression

as B Z ¢
X = |:<-T 1} (41)
h* = _max J(b) -7l o . . )
1K whereZ € R% <X is a symmetric matrix, and € R*. We note
= max 2bTAy —bT(H++Db (35) that X > 0 is equivalent tdz — ¢¢T > 0 due to the Schur
g complement [20]. By substituting (41) into (38), Problem (38)

can be reformulated as
whered > 1 andy > 0 are constants, arfd” denotes the max-

imum objective value achieved by Problem (35). We call (35) I* = max 2¢" Ay — Tracd Z(H + 7I))
the generalized bound relaxation (GBR) problem. Itis observed stZ -0
that if H + +I is positive definite, then the objective function in Zi<d® i=1,... K. (42)

(35) is strictly concave, and thus, the solution to (35) is unique

[19]. (Note that ifR is of full rank, orify > 0, thenH +~vI  SinceH + 1 > 0

is positive definite.) Lebcpr be the solution of (35), and let

beer = o(bepr) be the approximate MLD solution of the Trac€(Z — (¢ )(H ++1)) > 0 (43)
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foranyZ — ¢¢* > 0. It follows from (43) that

TracdZ(H ++1)) > (" (H + ~I)¢ (44)
for any feasible(Z, ¢). Furthermore, since the diagonal ele-
ments of a PSD matrix are non-negative

(*<Zi<d? i=1,...,K (45)
for any feasiblgZ, ¢). Now, define(Z*, {*) to be the solution
of (42). Applying (44) and (45) to (42), we get

I* = 2(¢) Ay — (¢ (H+41)¢" (46a)
< max 2TAy - ("(H4ATC =" (46h)

Thus, (39) follows.

Next, we prove the equivalence in (40), using the assumptis
that the matrixH + ~I is positive definite. Sincé* = [*, the
equality sign holds in (46a) and (46b). Comparing (42) wit!
(46a), we see th&Z*, {*) must satisfy the following condition:

TracdZ*(H ++1)) — (¢ (H+~D)¢* =0 (47a)
which is equivalent to
Trace(Z* — (*(¢CH")(H+1) = 0. (47b)

Using standard properties of positive definite and semi-defini

matrices [21, p. 318], it can be shown that (47b) holds if an=

only if

(Z* = C(¢HHE+AT) = 0. (48)
Hence, for a positive definite (and thus invertibl)+ ~I, we
must have

Z" = (¢ (49)
Subsequently, the solution to (38), which is denote®Xhys of
the form

X =qq", q=[¢")" 11" (50)

Comparing the two equivalent problems (35) and (42), we see

that(* = bepr. We also notice that* is unique becaudegggr
is unique for a positive definit#l + ~I. Finally, by applying
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Fig. 1. Near—far performance of (a) the SDR-ML detector and the true ML
detector. (b) Various multiuser detectors. The number of users is 4, and the user
of interest is 3 with2E5 /A, = 11 dB. Note that for the SAGE detectors,
decorrelator initialization is employed, and the number of stages is 5.

where Q is given by (37). Obviously, the equivalent GBR
problem in (38) is a relaxation of (51), wheké of the equality

Property 2 to (50), it can be shown that for any number of rafonstraints in (51) are replaced by inequality constraints.

domizations, (40) holds with probability 1. O

Hence, SD relaxation is tighter than GBR, and therefore, it

Theorem 1 provides the important implication that the SI3 expected that the SDR-ML detector should yield a better
relaxation algorithm for the GBR problem is equivalent to th@Pproximation than any GBR-based detectors. The superior
GBR algorithm itself in the sense that they have the same tigherformance of the SDR-ML detector is demonstrated in the
ness and that they produce the same approximate solution urf@éewing section.

the assumption dH + ~I being positive definite. More impor-

tantly, due to Property 1 (in Section IV-A), the SD relaxation

problem in (13) can be re-expressed as

max Tracg XQ)
st.X >0

VI. SIMULATION RESULTS

We now demonstrate the performance of the SDR-ML de-
tector in a number of synchronous CDMA scenarios.

Example 1: The purpose of this example is to compare the
BER performance of the ML detector and that of the SDR-ML
detector. Since the ML detector is computationally prohibitive
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TABLE I 10 T T T
MAXIMUM -ABSOLUTE CROSSCORRELATION VALUES AND SUM-SQUARED
CROSSCORRELATION VALUES OF TWO SPREADING CODES GOLD-31 AND
KAS-15, RESPECTIVELY STAND FOR THE LENGTH-31 GoLD CODESWITH
K = 16, AND THE LENGTH-15 KAsaMI CODES(LARGE SET) WITH K = 15 ‘
10”
g
=
User max;is; | Rl Lz R 5
Index (4) [ Gold-31 | Kas-15 | Gold-31 | Kas-15 =
1 0.226 0.6 0.365 1.38 @ 16
2 0.29 0.333 0.515 0.276 EE
3 0.226 0.6 0.265 1.34 &
4 0.29 0.467 0.415 0.916 g
5 0.226 0.467 0.415 0.56 >
6 0.29 0467 | 0382 | 0.524 R [y e
7 0.29 0.6 0.515 0.667 -+ Theoretical upper bound for Exact ML
8 0.29 0.6 0.349 1.06 v
9 0.29 0.467 0.582 0.56 - Muna=5
10 0.29 0.333 0.399 0.347 : %r-ndj ig
1 0.29 0.6 0.682 0.916 | v
15 | o2 | odor | om2 | 0 Ce e e el A+
. . . . 2B _ 2B _  _ 2E
14 0.29 0.6 0.332 0.88 Wl WEZ WK
15 0.29 0.467 0.365 0.88
16 0.29 - 0.465 - (a)

to implement for largel, we are restricted to the case of ¢ .
small number of users. In this example, we consider a four-us ;4 SIzzzze----To . g

system with spreading factor equal to 7. The correspondi g
signal correlation matrix is given by

7 -1 3 3
1]-1 7 3 -1
713 3 7 -1

3 -1 -1 7

(52)

Average BER of all us;

= No interference
1] <O~ Matched filter only
—x— Decorrelator
-0- LMMSE
=4~ SDR-ML (Mrena = 20)
«- Theoretical upper bound for Exact ML

]
&

We are interested in a near—far simulation scenario in which t

BER performance of a particular user is evaluated under varic
SAGE with:

interfering user signal energies. The simulation setting is sir ¢ Hard-dscision M-step

ilar to that in [9] and is given as follows. User 3 is chosento b 10+, == U’l‘“"m M:ﬂ’ T T : B - )
the desired user with SNR fixed 2F; /N, = 11dB, whereas Bl =Lk

users 1, 2, and 4 are treated as interferers ®#h /N, =

2F> /N, = 2E4/N,. (Similar results are obtained when one (b)

of the other users is chosen as the desired user.) The number

f trials for the simulation i 1 _The near-f5i9- 2. BER performance in a 16-user synchronous CDMA system using
of trials for the simulation is set to be 1 000 000 € nea ength-31 Gold codes. (a) Average BER of the SDR-ML detector with different

Performance of the true ML detector (implemented_ Via_eXhalﬁImber of randomizations. (b) Average BERs of various multiuser detectors.
tive search) and the SDR-ML detector is plotted in Fig. 1(a)iote that for the SAGE detectors, decorrelator initialization is employed, and

where the symboM, .. represents the number of randomizafe number of stages is 5.

tions. For reference, the no-interference lower bound is plotted

in the same figure. (The no-interference bound is the perfahe SDR-ML detector provides better BER performance than
mance of user 3 in the absence of users 1, 2, and 4, and, hettoese alternative suboptimal detectors, which supports our view-
is independent of the abscissa.) It is seen that the performapo@t in Section V that SD relaxation should perform better than
of the SDR-ML detector improves significantly wiff,,,,g and unconstrained relaxation and bound relaxation. O

that its BER foriM,,,qa = 10 is almost the same as that of the Example 2:In the second example, we are interested in
true ML detector. We also compare the BER performance of tagerage BER performance of a number of multiuser detectors
SDR-ML detector with that of various suboptimal multiuser dewhen all users have the same signal strength. Two sets of
tectors in Fig. 1(b), using the same scenario as in Fig. 1(a). Rpreading codes, namely, the length-31 Gold codes with
call from Section V that the matched filter detector, the decok = 16 and the length-15 Kasami codes (large set) with
relator, and the LMMSE detector can be regarded as uncdii-= 15, are chosen for the test. Measures of the cross-corre-
strained-relaxation detectors, whereas the SAGE detector witions of the two spreading code sets are tabulated in Table II.
unit-clipper A -step can be viewed as a bound-relaxation dé-is observed that the length-15 Kasami codes exhibit a much
tector. (It should also be pointed out that the SAGE detectstronger cross-correlation than the length-31 Gold codes.
with hard-decisionM-step is structurally equivalent to a se¥igs. 2 and 3 show the average BER performance of the various
rial-update interference-canceling detector [9].) It is seen thaultiuser detectors for the two code sets. For reference, we
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Fig. 4. Near—far performance plots illustrating the average BERs of the

sired users versus the SNRs of the interfering users. (a) Sixteen-user
nchronous CDMA system using length-31 Gold codes. (b) Fifteen-user

nchronous CDMA system using length-15 Kasami codes. Note that for the
GE detectors, decorrelator initialization is employed, and the number of

stages is 5.

Fig. 3. BER performance in a 15-user synchronous CDMA system usi
length-15 Kasami codes. (a) Average BER of the SDR-ML detector wi
different number of randomizations. (b) Average BERs of various multiusg
detectors. Note that for the SAGE detectors, decorrelator initialization
employed, and the number of stages is 5.

have also plotted the no-interference lower bound and Verdi’s

theoretical upper bound [1] on the BER performance of trsufficiently high SNRs [1], we infer that the performance differ-
true ML detector. We first observe that the SDR-ML detect@nce between the SDR-ML detector and the true ML detector
provides good BER performance fbf...q4 > 10. Moreover, it should be small. (Recall that the computational cost of empiri-
is seen that the BER performance of the SDR-ML detector éally evaluating the BER performance of the exact ML detector
better than that of the other multiuser detectors, particularly isprohibitive in this scenario.) O

the case of length-15 Kasami codes, where the performance oExample 3: In the third example, we use the length-31 Gold
other detectors is considerably degraded by the strong sigoatles and the length-15 Kasami codes in the previous example
cross-correlations. In the case of length-31 Gold codes, tteetest the near—far performance of the various detectors. The
BER of the SDR-ML detectorM,..a > 15) lies well below simulation setting is as follows: Users 1 to 8 are the interferers
Verdé’s upper bound [1] on the BER of the true ML detector. Iwith 2E /N, = 2E» /N, = --- = 2Eg/N,. Users 9 taK are

the case of length-15 Kasami codes, the BER of the SDR-Mhe desired users with SNRs fixed®y /N, = 2E19/N, =
detector(M,.,a = 20) is below Verdd's upper bound for --- = 2Ex /N, = 11 dB. The number of trials for the simula-
2E /N, < 10 dB, and slightly above Verdé’'s upper bound ation is 1 000 000. Due to space limitations, we illustrate the av-
2F/N, =11 dB. Since Verd(’'s upper bound is tight forerage near—far performance of the desired users in Fig. 4, instead
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of showing the near—far performance plots for each user. Againio]
the SDR-ML detector is seen to provide better average BER per-
formance than the other suboptimal detectors. Although itis nqgf 4,
shown here, the near—far performance of the SDR-ML detector
for each user was also observed to be better than that of the other
detectors. O [
(13]

VII. CONCLUSION AND DISCUSSION [14]

In this paper, we have applied the SD relaxation method to
approximately solve the NP-hard MLD problem with a poly- [15]
nomial-time complexity ofO(K?3-). Simulation results have
shown that the SDR-ML detector achieves BER performanceis]
close to that of the true ML detector, even when the signal
cross-correlations are strong or the near—far effect is significan&.
Moreover, we have shown that some existing detectors such as
the decorrelator, the LMMSE detector, and a particular form of18l]
the modified SAGE detector can be considered as degenerate
forms of the SDR-ML detector. The resulting expectation thaf19)
the SDR-ML detector should perform better than those detectors
was confirmed by simulations that showed that the SDR-ML del
tector often provides substantially improved performance. Sincgi]
those existing detectors requif¥ K #) operations [cf., (32) and
(33)], the SDR-ML detector offers an attractive tradeoff be-
tween BER performance and computational cost.

The work presented here leads to a few interesting future di-
rections. First, this work has focussed on the application of SD
relaxation to synchronous CDMA systems. It will be interestin
to see how the SDR-ML detection technique may be applied
other scenarios, such as CDMA over frequency-selective fadi
channels and asynchronous CDMA systems. Second, we h
implemented the SDR-ML detector using a standard algorith
[17], [18]. It remains to be seen whether fast implementatio
of this algorithm can be developed for SDR-ML detection a|
plications.
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