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Abstract—We propose a flexible, efficient design technique for
the prototype filter of an oversampled near perfect reconstruction
(NPR) generalized discrete Fourier transform (GDFT) filterbank.
Such filterbanks have several desirable properties for subband
processing systems that are sensitive to aliasing, such as subband
adaptive filters. The design criteria for the prototype filter are
explicit bounds (derived herein) on the aliased components in the
subbands and the output, the distortion induced by the filterbank,
and the imaged subband errors in the output. It is shown that
the design of an optimal prototype filter can be transformed into
a convex optimization problem, which can be efficiently solved.
The proposed design technique provides an efficient and effective
tool for exploring many of the inherent tradeoffs in the design
of the prototype filter, including the tradeoff between aliasing in
the subbands and the distortion induced by the filterbank. We
calculate several examples of these tradeoffs and demonstrate
that the proposed method can generate filters with significantly
better performance than filters obtained using current design
methods.

Index Terms—Adaptive filters, convex optimization, modulated
filterbanks, oversampled filterbanks, subband filtering.

I. INTRODUCTION

UNIFORM multirate filterbanks form the basic unit of
many multirate signal processing systems in a diverse

set of applications that includes audio and image compression,
denoising, feature detection and extraction, and adaptive fil-
tering [1]–[4]. A typical example of such a system is illustrated
in Fig. 1. The standard design techniques for uniform filter-
banks are based on (approximating) the perfect reconstruction
condition that in the absence of any subband processing, the
output signal is simply a scaled and delayed version of the
input [1]–[4]. It is now well known that perfect reconstruction
can be (exactly) achieved with finite impulse response (FIR)
filters in both the critically sampled and oversam-
pled arrangements [2]–[6]. Classes of efficiently
implementable “modulated” filterbanks are also available
[1]–[4], [7]–[10]. However, it is becoming apparent that perfect
reconstruction filterbanks do not necessarily provide optimal
performance of the subband signal processing system as a
whole, e.g., [11]. Designs based on the perfect reconstruction
condition typically allow considerable aliasing in the subband
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signals but structure these aliased components so that in
the absence of any subband processing, they are cancelled by
the synthesis filterbank. This characteristic may be undesirable
if the subband processing block is sensitive to aliasing in the
subband signals or if the subband processing block distorts the
aliased components in the subband signals in a way that reduces
the effectiveness of alias cancellation. An application that is
particularly sensitive to aliasing in the subbands is subband
adaptive filtering [12]–[17]. The subband processing block
of a subband adaptive filtering system typically consists of a
diagonal matrix of adaptive filters, each of which operates on
one of the subband signals, and operates independently of the
other adaptive filters.1 The objective of the subband processing
block is, quite naturally, to filter the subband signals. However,
by doing so, it may distort the aliased components in the
subband signals and, hence, reduce the effectiveness of alias
cancellation.

For subband adaptive filtering, and other applications with
similar characteristics, near-perfect reconstruction (oversam-
pled) filterbanks that suppress aliasing in the subbands and
“imaging” [2] of the subband errors in the output, rather than
relying on cancellation, offer the potential for improved per-
formance. In particular, the performance of systems based on
the class of oversampled generalized discrete Fourier transform
(GDFT) filterbanks is quite encouraging [16]–[22]. These
filterbanks are better able to suppress aliasing in the subbands
than (uniform) oversampled cosine-modulated filterbanks
[18], [19], [21] and can be efficiently implemented using the
GDFT [1]. In this paper, we propose a flexible, efficient design
technique for the prototype filter of an oversampled near
perfect reconstruction (NPR) GDFT filterbank. The design
criteria are explicit bounds (derived herein) on the aliased
components in the subbands (and the output), the imaged
subband error components in the output, and the distortion
induced by the filterbank. These bounds rigorously amalgamate
several intuitively developed design criteria in the current liter-
ature [15], [18]–[22] and subsume the criteria derived in [16,
Section IV-B] and [23]. The proposed design criteria generate
familiar constraints on the prototype filter: The aliasing criteria
result in bounds on the stopband energy and the maximum
stopband level, the imaging criterion results in an additional
bound on the transition-band energy, and the distortion criterion
results in a measure of the distance between the prototype filter
and a “self-orthogonal” filter.

1The use of off-diagonal “cross” filters [13] can reduce the sensitivity to
aliasing but may adversely affect the convergence properties of the adaptive
filter and increases the computational cost of the system.
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Fig. 1. -channel uniform subband signal processing system.

In their direct form, these constraints generate a nonconvex
feasible set. Therefore, careful detection and management of
locally optimal solutions may be required in order to obtain a
filter that achieves an objective value sufficiently close to that
of a globally optimal prototype.2 The key step in obtaining the
proposed efficient design technique is to show that the design
criteria can be (precisely) transformed into convex functions of
the (deterministic) autocorrelation of the prototype filter and,
hence, that a (globally) optimal prototype filter can be obtained
from the solution of a convex optimization problem that can be
efficiently solved. A feature of the proposed method is that the
semi-infinite constraints generated by the maximum stopband
level constraint and the constraint that the autocorrelation can be
spectrally factorized are transformed into (finite) linear matrix
inequalities.

The convex formulation of the design problem not only
provides an efficient algorithm for finding an optimal proto-
type filter, but by doing so, it provides an efficient method
for determining the inherent tradeoffs between competing
prototype design criteria. Of particular interest is the inherent
tradeoff between aliasing in the subbands and the distortion in-
duced by the filterbank. We calculate several examples of these
tradeoffs and demonstrate that filters designed via the proposed
formulation can provide significantly better performance than
filters designed using current methods.

The paper is arranged as follows: In Section II, we describe
the class of GDFT filterbanks and discuss the relationships be-
tween the proposed design method and current techniques in
greater detail. In Section III, we derive the design criteria, and
in Section IV, we provide the transformation to the convex de-
sign problem. In Section V, we demonstrate how the proposed
method generates filters that achieve certain inherent design
tradeoffs, and in Section VI, we illustrate how this leads to
improved performance over filters designed by two competing
methods.

II. GDFT FILTERBANKS

The generalized discrete Fourier transform (GDFT)
filterbank [1] we will consider is of the form in Fig. 1, with
the analysis and synthesis filters consisting of exponentially

2Rigorous methods (e.g., [24]) are effective but tend to be computationally
expensive. Simpler techniques, such as running a standard local optimization
algorithm from multiple starting points, are less expensive but may not be as
effective.

modulated versions of a single real-valued FIR prototype filter
:

(1a)

(1b)

where and are frequency-shift and phase-shift constants,
respectively. Such filterbanks can be efficiently implemented
using the GDFT [1]. It is well known that the only critically
sampled filterbanks of the form in (1) with perfect recon-
struction (PR) are those generated by a prototype filter that is
a length- rectangular window [25]. Such a prototype filter
leads to substantial aliasing in the subbands. Moreover, crit-
ically sampled near perfect reconstruction (NPR) filterbanks
of the form in (1) have approximately the same prototype. In
the oversampled case, there are longer prototypes that gen-
erate PR and NPR filterbanks of the form in (1), and hence,
prototypes that generate much lower aliasing in the subbands
can be obtained. The focus of this paper is on NPR filter-
banks because the effectiveness of the alias cancellation in PR
filterbanks may be compromised by the subband processing
and because improved alias suppression in the subbands and
image suppression in the output can be achieved by relaxing
the PR constraint. The fact that we employ the same pro-
totype filter in the analysis and synthesis banks means that
our NPR filterbanks have polyphase matrices [2], which are
nearly paraunitary, and hence have favorable noise robustness
and numerical properties.

One possible approach to the design of oversampled GDFT
filterbanks is to use the fact that any prototype filter for
an -times oversampled PR cosine-modulated filterbank is
a prototype for a -times oversampled PR DFT filterbank
[9], [10]. The design of prototype filters for NPR and PR
cosine-modulated filterbanks is usually expressed as a con-
strained optimization problem for the filter coefficients [26],
[27] or as an unconstrained optimization problem over some
alternative variables (in some cases called lattice coefficients),
which are related to the filter coefficients in such a way that PR
is automatically satisfied [29]. Unfortunately, the constraints in
the former method and the objective in the latter are nonconvex
functions of the design parameters, and hence, these formula-
tions can be quite awkward to solve. Furthermore, exploiting
the relationship with cosine-modulated filterbanks generates a
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subclass of the (G)DFT filterbanks but not the whole class [9],
[10]. As one might expect, direct formulation of the design
of a GDFT prototype (over the whole available class) also
leads to nonconvex optimization problems [16], [18], [19],
[22]. (Some simple, but ad hoc, prototype design methods
have also been proposed [15], [20].) The approach we outline
in this paper involves the transformation3 of the design into
a convex optimization problem in which the autocorrelation
coefficients of the prototype are the design variables. This
convex optimization problem can be efficiently solved for the
(globally) optimal autocorrelation, from which an optimal pro-
totype can be obtained via spectral factorization. A number
of methods of spectral factorization are described in [30] and
[35]. The simplicity of autocorrelation-based prototype design
has been recognized before [36], in the context of cosine-mod-
ulated filterbanks. However, in [36], the transformation of the
design criteria into functions of the autocorrelation sequence
involves approximations, and these approximations manifest
themselves in undesirable properties of the prototype. In con-
trast, our design transformation is precise, and since our design
criteria are explicit bounds on the aliasing, imaging and distor-
tion energies, we obtain prototype filters with many desirable
properties.

III. DERIVATION OF DESIGN CRITERIA

In this section, we establish design criteria for the prototype
filter that enable us to control the aliased components that appear
in the subband signals , the imaged components that
appear in the output, and the distortion induced by the filterbank.
As discussed in the Introduction and studied in greater detail
in [16] and [17], the performance of a GDFT-filterbank-based
subband adaptive filter is critically dependent on these terms.

If denotes the -transform of the input
signal, then the th subband signal in Fig. 1 has a -transform

(2)

where . The first term on the right-hand side of
(2) represents the desired component of the subband signal, and
the second term represents the aliased components.

The nature of the output of the subband processing system in
Fig. 1 clearly depends on the nature of the subband processing
block. In subband adaptive filtering applications, the subband
processing block typically consists of a diagonal matrix of
adaptive filters. If the adaptive filter in the th subband has
converged to [and is “frozen” from that point], then the

3Similar transformations have also led to convex formulations of some other
FIR filter design problems [30]–[34], but the design problems considered
herein are specially tailored to the design of prototype filters for oversampled
NPR GDFT filterbanks.

subband outputs are , and the output
of the system in Fig. 1 is

(3)

If there is no subband processing, then ,
and (3) simplifies to the standard expression for the
output of a filterbank [1]–[4]. The transfer function

in (3) de-
scribes the processing of the input signal , whereas the
second term in (3) represents the aliased components that
appear at the output. In Sections III-A–D, we will analyze the
aliased components in (2) and (3), the undesired distortion
induced by the filterbank, and the imaged components of errors
in that appear in the output. We will show how the
energy of each term can be bounded by natural properties of
the prototype filter. For simplicity, our analysis is based on a
deterministic input signal , but a complementary analysis
based on a stochastic model for can also be performed.

A. Aliasing in the Subbands

Our analysis of the aliased components in the th subband
signal will be expedited by considering an upsampled ver-
sion of , which has the same sample rate as . This
signal will be denoted by , where , and

, . Since upsampling does
not change the energy of the signal, and since the spectrum of

is periodic (in frequency) with period , the energy
of can be computed from as follows:

(4)

where is an interval of width . For our analysis, a con-
venient interval is

(5)

which is the principal spectral support of the th analysis filter
in a GDFT filterbank. To simplify some of our expressions, we
define

and (6)
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Using (4) and (2), the energy of the aliased components in the
th subband signal for a deterministic signal is

(7)

Setting and using the fact (1) that
, where is the frequency response

of the prototype filter, we have that

(8)

We will now develop bounds for under the assumption
that is finite. This assumption ensures that the signal
energy and

(9)

are finite. The assumption also ensures that

(10)

is finite for all . (The term is closely related to the
spectral correlation [37] of for a frequency separation of

.) Note that and that . Since
is finite, the following portion of is also finite:

(11)

By taking the absolute value of the integrand in (8) and ex-
tracting the terms dependent on the prototype filter, we obtain
the following bound on :

(12)

(13)

Let denote the maximal spec-
tral component of the prototype, and let

, with , denote

the maximum sidelobe level of the prototype. That is, let the
prototype filter satisfy a spectral mask of the form shown in
Fig. 2. Since , we have that

(14)

Hence

(15)

Equation (15) is an explicit bound for the energy of the aliased
components in each subband signal and is a simple multiple of
the square of the maximum stopband level of the prototype filter.

An alternative bound on can be obtained by writing
, where contains the terms

in (8) with , and contains the remaining terms.
Using the technique used to obtain (15), can be bounded

as .
The remaining term is

(16)

where the last step is obtained by applying the Hölder inequality
[38] and observing that

The term is the stopband energy of the filter

(17)

Hence, we have the following alternative bound to that in (15)

(18)

which is a linear combination of the stopband energy and the
square of the maximum stopband level of the prototype filter.

B. Aliasing in the Output

The analysis of the aliased components in the output of the
subband processing system is more difficult than that of the
aliased components in the subbands because it depends on the
nature of the subband processing. However, for the adaptive fil-
tering scenario described at the beginning of Section III, we can
determine the energy of the aliased components in the output by
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Fig. 2. Mask on the magnitude spectrum of the prototype filter.

evaluating the energy of the second term on the right-hand side
of (3). That is

(19)

Using techniques akin to those used to derive (18) (the details
of which have been omitted for brevity), we can obtain the fol-
lowing bound for :

(20)

where , and

(21)

This bound consists of simple functions of the maximum stop-
band level, the stopband energy, and the maximum component
of the spectrum of the prototype filter. If the adaptive filters are
such that , then , where

was defined in (10), and we can obtain the following
simplified bound:

(22)

C. Distortion in the Output

The third performance measure for the filterbank is the dis-
tortion that it induces on the signal. In order to isolate the (unde-
sirable) distortion induced by the filterbank from the (desired)
processing performed by the subband processing block, we will
analyze the distortion in the absence of any subband processing,

that is, with in (3). If the filterbank is distortion-free,
then , where is a con-
stant, and is an integer [2]–[4]. In that case, the first term in
(3) becomes

Without loss of generality in the design criteria for the prototype
filter, we can restrict our attention to the case where the output
is neither scaled nor delayed, i.e., where and . In
that case, the energy of the distortion induced by the filterbank
is

(23)

This may be bounded in the following way:

(24)

(25)

where is the Kronecker delta, and we have used Parseval’s
relation. [The derivation of (25) is analogous to that of (43) in the
Appendix, for which more details are provided.] If we normalize
the energy of the prototype filter so that , then

(26)

where

(27)

As shown in the Appendix, for a normalized prototype, the en-
ergy of the distortion in the output can also be bounded by

(28)

where and, as previously
defined, is the energy of the input signal.
In this paper, we will focus on the bound on in (26), but
previous work in a different application [34] suggests that
using the bound in (28) will generate qualitatively similar
results. This is because both and are measures of the
“distance” between and a filter , which satisfies

. (Such are often said to be
self-orthogonal [3].) The term is a two-norm measure, and

is a one-norm measure.
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D. Imaging of Subband Errors in the Output

The remaining performance measure of the filterbank cap-
tures the extent to which errors between the desired and actual
outputs of the th subband adaptive filter corrupt the filterbank
output in other subbands. To be more precise, let de-
note the ( -transform of the) desired output of the th subband
adaptive filter. The error signal that drives that adaptive filter is

; see also Fig. 7 in Section VI. Such
errors naturally manifest themselves in the th subband of the
output. However, images of also appear outside the th
subband of the output. If we let

denote the th subband of the output, then
the energy of the imaged components of is

If we let , then

where is the energy in the
transition band of the prototype filter, and is the stopband
energy.

IV. PROTOTYPE DESIGN

As we have argued in the Introduction, the performance of
subband adaptive filtering systems is sensitive to the error mech-
anisms discussed in Section III. Now that the extent of these
error mechanisms for oversampled GDFT filterbanks has been
bounded by simple functions of the prototype filter, we can de-
sign filters that optimize these bounds so that optimized subband
signal processing systems can be realized. Using the analysis in
Section III, it is clear that we have the following.

1) For a given normalization, small values of the maximum
stopband level , the stopband energy , and the
maximum spectral component of the prototype filter
will guarantee that the energy of the aliased components
in the subbands and the output is small.

2) A small value of in (27) will guarantee that the energy
of the (amplitude and phase) distortion in the output is
small.

3) Small values of the transition-band energy and the
stopband energy will guarantee that the energy of
imaged subband errors in the output is small.

Although various combinations of some of these criteria have
been employed by other authors (on a somewhat ad hoc basis),
we have shown how they explicitly bound the energy of the
aliased components in the subbands and the output, the energy
of the distortion in the output, and the energy of the imaged sub-
band errors in the output. A natural design criteria for the pro-
totype can be obtained by minimizing a (linear) combination
of , , , , and , subject to bounds on their
individual values.

For example, we might wish to find the length prototype
filter that minimizes the stopband energy, subject to fixed

bounds on the maximum stopband level, the distortion coef-
ficient, the transition-band energy, and the maximum spectral
component of the filter, subject to the filter being normalized.
That is, we might seek the solution of the following optimiza-
tion problem:

(29a)

subject to (29b)

(29c)

(29d)

(29e)

(29f)

where , , , and are fixed constants. Note that in
contrast to standard peak-constrained least-squares filter design
[39], the design criteria do not include an explicit lower bound
on the magnitude spectrum in the passband of the prototype
filter. However, by generalizing Nyquist’s first criterion for in-
tersymbol-interference-free pulse amplitude modulation, it can
be shown that the distortion and maximum stopband level con-
straints [(29b) and (29c), respectively] implicitly control the
pass-band “ripple” [34, App. A].

The integrals in (29a) and (29d) can be analytically evaluated,
resulting in a convex quadratic objective and a convex quadratic
constraint, respectively, and by squaring both sides of (29b)
and (29e), we obtain two infinite sets of convex quadratic
constraints (each expression generates one constraint for each
relevant frequency). These infinite sets of constraints can be
approximated by discretization [40]. [A simple discretization
scheme is discussed in (31) below.] Therefore, in the absence
of (29c), the problem in (29) could be efficiently solved, using,
for example, second-order cone programming techniques [41].
Unfortunately, the distortion constraint in (29c) is, in general,
a nonconvex quadratic function of . Hence, the problem
in (29) is a nonconvex optimization problem that may require
careful (and computationally expensive) management of locally
optimal solutions in order to obtain a filter whose performance
is sufficiently close to that of a globally optimal filter. This is
important because the objective and the constraints in (29) are
competing criteria. For example, it is well known that there
is a tradeoff between the maximum stopband level and the
stopband energy (e.g., [39]). Achieving a good design involves
an exploration of the tradeoffs between these criteria, followed
by the design of a filter that achieves a desired position on the
tradeoff surface. The nonconvexity of (29) can make it quite
awkward to get an accurate description of the tradeoff surface
and, hence, quite difficult to determine how far a given filter
is from providing an optimal tradeoff. Furthermore, it can
be quite awkward to determine when the constraints in (29)
conflict so that there is no filter of the given length that satisfies
all the constraints, i.e., reliable detection of infeasibility of
(29) can be difficult to achieve.
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Given the difficulties involved in solving (29), some authors
have developed interesting approximations to the distortion
measure (29c), such as considering only amplitude distortion
and ignoring phase distortion [22]. Others have simplified
the design by iteratively linearizing and
employing the iterative least squares technique to determine
(locally) optimal filters for the simplified formulation [19].
(The method in [19] will be discussed in more detail in Sec-
tion VI.) In contrast, the proposed method solves (29) without
approximation or additional constraints and allows efficient
and accurate calculation of the design tradeoffs and filters that
achieve them.

The key observation in the development of the proposed
design method is that the objective and the constraints in (29)
are all convex functions of the autocorrelation of the filter
coefficients

Using the fact that and
, the integrals

in (29a) and (29d) can be analytically evaluated. They are
equal to and , respectively,
where ,
for , , and

for . There-
fore, the design problem in (29) can be transformed into the
following optimization problem in , :

(30a)

subject to (30b)

(30c)

(30d)

(30e)

(30f)

(30g)

This change of variables must be handled carefully because not
all sequences are the autocorrelation coefficients of some
filter. A necessary and sufficient condition for to corre-
spond to the autocorrelation coefficients of a filter is (30g), e.g.,
[42]. Given a sequence that solves (30), filter coefficients

that generate this autocorrelation can be found using stan-
dard spectral factorization techniques [30], [35].

The objective in (30a) and the constraints in (30b)
and (30d)–(30g) are linear, and hence convex, in ,

, and (30c) is a convex quadratic constraint.4

Therefore, the tradeoffs between these competing prototype
design criteria can be efficiently evaluated and an optimal

4For reasons of numerical accuracy, one may wish to replace (30c) by

, which is a (convex) second-order cone
constraint [41].

autocorrelation efficiently found using convex optimization
techniques. Furthermore, infeasibility of (30) can be reliably
detected.

Unfortunately, the constraints in (30b), (30e), and (30g) each
generate an infinite number of linear constraints on —one
for each relevant frequency—and it may appear that these could
be awkward to handle in practice. One possible approach is
to approximate the constraints by discretization [40]. A simple
scheme for discretizing (30b) is to choose a set of frequen-
cies , which are often
uniformly spaced, and approximate (30b) with ordinary in-
equality constraints

(31)

where is chosen heuristically so that satisfaction of (31)
guarantees satisfaction of (30b). In this way, the design problem
can be approximated by a finite-dimensional problem with
linear and convex quadratic constraints—a problem that is
efficiently solvable, using, for example, second-order cone
programming techniques [41]. As the number of discretization
points is increased, can be reduced, and hence, the quality
of the approximation improves. However, this also increases
the number of constraints in the optimization problem, which
may result in longer solution times and may expose the problem
to numerical difficulties. A “rule of thumb” is that
will provide a sufficiently accurate approximation [30].

An elegant, precise, and finite-dimensional alternative to
discretizing these linear constraints is to transform them into
linear matrix inequalities (LMIs)[31], which can be efficiently
enforced using semidefinite programming (SDP) techniques
[43]. In the case of (30g), we can exploit the positive real
lemma, which states (e.g., [31]) that , if and
only if there exists a symmetric positive semidefinite matrix

such that

(32)

where denotes the th element of a matrix. (A sym-
metric matrix is said to be positive semidefinite if all its eigen-
values are non-negative. This will be denoted by .)
Similarly, we can use the bounded real lemma (e.g., [31]) to
enforce (30e): , , if and only if there exists a
symmetric positive semidefinite matrix such that

(33)
Equations (32) and (33) are finite sets of linear constraints on
the semidefinite matrix and are (exactly) equivalent to the
infinite set of linear constraints on generated by (30e) and
(30g), respectively. Similarly, for the maximum stopband level
constraint , if and only if [31]
there exist positive semidefinite matrices and

such that

(34)

where we have (35)–(37), shown at the bottom of the next page,
and .
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This LMI approach has the advantage that the transformation
to the finite problem is precise, and hence, we avoid having to
select and in (31). The resulting optimization problems
can be expressed as

(38a)

subject to

(38b)

(32)-(34) (30c), (30d), and (30f).

(38c)

The problem in (38) is a (convex) cone program with a combina-
tion of linear, second-order, and semidefinite cones and can be
efficiently solved using general-purpose solvers for such prob-
lems (e.g., [44]). Furthermore, there are some early indications
(e.g., [45]) that the inherent structure in (38) can be exploited
using specially designed algorithms that are substantially more
efficient than general-purpose methods.

V. DESIGN TRADEOFFS

In this section, we illustrate how the proposed convex formu-
lation in (38) can be used to efficiently evaluate the tradeoffs in
prototype filter design for oversampled NPR GDFT filterbanks.
As discussed in the Introduction, an important tradeoff is that
between aliasing in the subbands and the distortion induced by
the filterbank. In Section III, we showed that the energy of the
aliased components in the subbands can be bounded by linear
functions of the maximum stopband level and the stopband en-
ergy of the filter and that these two quantities, along with the
maximum spectral component of the filter, bound the energy of
the aliased components at the output. In addition, we showed
that the energy of the distortion error induced by the filterbank
can be bounded by a multiple of the distortion coefficient
[see (26)]. Therefore, a natural tradeoff to explore is how the
minimum achievable stopband energy varies with the bound on
the distortion coefficient for a given bound on the maximum
stopband level (and a fixed bound on the maximum spectral
component and the transition-band energy). This tradeoff can
be efficiently obtained by solving (38) [or a discretized version
of (30)] for different values of and fixed values of , and

. The resulting tradeoff curve generates considerable insight
into the design of the prototype filter, as we illustrate in the fol-
lowing example.

Example 1: Consider a GDFT filterbank with
subbands and a down-sampling factor of . As in
Section III-C, we normalize the prototype to have energy

. To make an appropriate choice for the upper
bound on the maximum spectral component , we observe
that if the stopband suppression is substantial, then most of
the filter’s energy lies in the passband . Using
Parseval’s relation, in order for the prototype to have energy

, the average value of over this band must be
around . Since in this example, this is around 7.8 dB.
To allow for some variation of the spectrum over the passband,
we set , i.e., around 8.8 dB. The tradeoff between
the minimum achievable stopband energy and the bound on the
distortion coefficient for certain maximum allowable stopband
levels for filters of length 48 is given in Fig. 3.5 (As discussed
below, the constraint on the transition-band energy was not
activated in this example.) These curves represent the inherent
tradeoff between the stopband energy and the distortion coef-
ficient because all points on or above (and to the right of) the
curves can be achieved with a length 48 filter, and no length 48
filter can achieve any point below (and to the left of) the curves.
Each point on these curves was found by solving (38) using
the toolbox [44] for MATLAB.6 This task required
between 3 and 6 s of CPU time on a 1.6-GHz Pentium IV
workstation. The power spectra of three representative filters
are given in Fig. 4, along with the corresponding masks. From
Fig. 3, we can see that when considerable distortion is allowed,
the maximum stopband level constraints we have chosen are
inactive. (The tradeoff curves coalesce.) However, as the distor-
tion constraint is made more stringent, the maximum stopband
level constraints become active. In fact, when the maximum
stopband level constraint is 34.5 or 36 dB below the maximum
spectral component constraint, there is no length 48 filter that
satisfies this constraint and has a vanishingly small distortion
coefficient. (The achievable regions for these constraints,
indicated by the dashed and dash-dot curves, respectively, are
bounded on the left.) Note, also, that a stopband energy “floor”
is encountered when considerable distortion is allowed. This

5The filter length is chosen to be an integer multiple of for compati-
bility with the competing interpolation-based method described in Section VI.
The proposed design method does not place any constraints on the filter length.
Length 49 filters for this example were designed in [46].

6A MATLAB “m-file” that expresses (38) in the input format required by
is available from the second author’s web site at http://www.ece.mc-

master.ca/~davidson.

(35)

(36)

(37)
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floor is due to the maximum spectral component constraint
(30e).

Given the proximity of and in this example,
compatible constraints on the transition-band energy have
only marginal effects on Fig. 3. More precisely, the range of
transition-band energy constraints that are active and result
in the optimization problem having a nonempty feasible set
is rather narrow. Hence, the corresponding curves have been
omitted from Fig. 3 for clarity. (This decision is validated
by Table I in Section VI.) However, in Section VI, we will
show that constraints on the transition-band energy have a
considerable impact when the filterbank has a downsampling
factor of rather than .

A distinct advantage of the design method developed in this
paper is its flexibility. Many other inherent design tradeoffs can
be explored using simple modifications to the design problem in
(38). For example, we can determine how the minimum achiev-
able maximum stopband level varies with the bound on the dis-
tortion coefficient for a given bound on the stopband energy by
simply replacing the objective in (38) by and by introducing
the additional linear constraint . As one
might expect, the general trend of the resulting tradeoff curves
is similar to that in Fig. 3, but quantifying this trend remains an
important task in practice; see [47] for further details.

Another interesting tradeoff is that between the minimum
achievable stopband energy and the maximum allowable
stopband level for a given bound on the distortion coefficient.
Curves of this type are often encountered in peak-constrained
least-squares filter design [39] but usually without the distor-
tion constraint. We can efficiently evaluate this tradeoff by
simply solving (38) for a range of values of given fixed
values of and ; see [47] for an example. The resulting
tradeoff curves indicate that relatively mild constraints on the
distortion coefficient have a considerable impact on the stop-
band energy/stopband level tradeoff but that as the distortion
constraint becomes more stringent, the impact of changes in
this constraint is significantly reduced.

An auxiliary problem that arises in filterbank design is the
choice of the length of the prototype filter. Typically, for com-
plexity reasons, we would like to use the shortest prototype
that satisfies a given performance level. Finding this minimum-
length prototype can be quite awkward using the nonconvex for-
mulation in (29) because it can be quite difficult to determine
whether or not a given set of constraints generates a nonempty
feasible set. In contrast, infeasibility of the proposed convex for-
mulation [(30) or (38)] can be reliably detected. Therefore, the
shortest length that achieves a given specification can be effi-
ciently determined using a bisection-based search (on the filter
length) for the feasibility boundary of a modified version of (30)
[or (38)] in which the objective is removed, and the linear con-
straint is added. (An analogous pro-
cedure in a different application appears in [48].) We illustrate
that procedure in the following example.

Example 2: In Example 1, we examined the tradeoff between
the minimum achievable stopband energy and the distortion co-
efficient for prototype filters of length 48. Using the above-men-
tioned bisection search method, we found that the shortest filters
achieving the tradeoff denoted by the in Fig. 3 for maximum

stopband levels 0, 30, 33, 34.5, and 36 dB below the maximum
spectral component constraint are of lengths 36, 42, 44, 48, and
49, respectively. Notice that the last case requires a filter longer
than 48. This is what we would expect, because the lies out-
side the corresponding achievable region for length 48 filters.

As we have seen in this section, a feature of the proposed de-
sign approach is that it is universal in the sense that the tradeoff
curves can be obtained without knowledge of the application
nor of the input signal. However, selection of an appropriate
point on the resulting tradeoff surface depends on the relative
importance of the three error mechanisms (aliasing in the sub-
bands and the output, distortion, and imaging in the output) on
the application at hand, as well as on the properties of the input
signal. While the selection of that point will require a certain
amount of application-specific empirical performance evalua-
tion, the bounds derived in Section III provide some guidance
as to how the properties of the input signal affect the relative im-
portance of a small stopband energy, a small maximum stopband
level, a small distortion coefficient, and a small transition-band
energy. For example, the signal-dependent coefficients of the
bound on the aliasing in the subbands in (15) and the bound on
the distortion in (26) are quite different. If these two error mech-
anisms are of equal importance in a given application, then for
a given signal, the relative sizes of the signal-dependent coeffi-
cients will guide the designer toward a point on the maximum
stopband level versus distortion coefficient tradeoff curve that
is appropriate for that signal.

VI. PERFORMANCE COMPARISON

Now that we have provided examples of the inherent trade-
offs in prototype filter design and have shown that the proposed
design method provides filters that achieve these tradeoffs, we
will compare the proposed method with two competing methods
[19], [20]. Both methods are of interest because, like the pro-
posed method, they generate filterbanks with nearly paraunitary
polyphase matrices, and they tackle the distortion induced by
the filterbank directly. In contrast, many other methods employ
approximations of the distortion, such as considering only am-
plitude distortion [22].

The method proposed by Harteneck et al. [19] (see also [16])
involves minimizing a linear combination of the stopband en-
ergy , the distortion coefficient , and any normalization
error, subject to the prototype filter having linear phase. In the
notation of the present paper, this can be written as

(39a)

subject to having linear phase (39b)

where is a chosen weighting. For symmetric filters,
imposing phase linearity is equivalent to requiring

. The problem in (39) is not convex and, hence, may re-
quire delicate management of local minima. However, given a
linear-phase filter as a “starting point,” a local minimum can
be found quite efficiently using an iterative least-squares (ILS)
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Fig. 3. Tradeoff between the fraction of the total filter energy that is in
the stopband and the (normalized) bound on the distortion
coefficient for length 48 filters with maximum stopband levels
0 dB (solid), 30 dB (dotted with ), 33 dB (dotted with ), 34.5 dB (dashed),
and 36 dB (dash-dot) below the maximum spectral component constraint.
The symbols , , and denote the tradeoffs achieved by the filters in
Fig. 4(a)–(c), respectively. The point denoted by the is used in Example 2.

technique [27]. In our implementation, we ran the ILS algo-
rithm from several systematic starting points and several random
starting points and then chose the locally optimal filter with the
lowest objective as our solution. Our systematic starting points
included the length- truncation of the square-root raised co-
sine filter (e.g., [28, p. 496]) with cut-off frequency and
roll-off parameter .

Although our analysis (see Section III) and some simulations
(below) suggest that our standard formulation [(29), (30), or
(38)] is more appropriate for many subband processing applica-
tions, we can obtain a convex problem similar to that in (39) by
simply dropping the maximum stopband level, transition-band
energy, and maximum spectral component constraints [(30b),
(30d) and (30e), respectively] from (30) and lifting the distor-
tion constraint (30c) into the objective

(40a)

subject to (40b)

(40c)

(40d)

Here, is the appropriate bound on the distortion coefficient
, and is the bound on the normalization error. As discussed

in Section IV, the third constraint (40d) can be handled via dis-
cretization or via transformation into an LMI. Notice, however,
that we do not impose the phase linearity constraint in (40) or
in any of our other formulations.

In contrast to the optimization-based methods proposed
by Harteneck et al. [19] and herein, Liu et al. [20] proposed

Fig. 4. Power spectra (in decibels) of filters that achieve the stopband energy
versus distortion coefficient tradeoff curve in Fig. 3 for a distortion coefficient of

and maximum stopband level constraints 0, 30, and 33 dB below the
maximum spectral component constraint. For clarity, the spectral mask imposed
by the maximum spectral component and maximum stopband level constraints
is shown by the dashed line. (a) We have also indicated the stopband edge

with a dotted line. (b) and (c) This edge is clear from the mask.

a simple, but ad hoc, method based on interpolated filters
[49], [50]. To obtain a “good” prototype filter, Liu et al. [20]
suggest that one can simply interpolate the lowpass filter from
an orthonormal two-channel filterbank by a factor of .
There are many well-known constructions of such filterbanks
[2]–[4], [51] and many choices for the interpolation algorithm.
As suggested by Liu et al. [20], we will use MATLAB’s

function to perform the interpolation. (While that
choice does provide “good” interpolation, the interpolation
depends on the filter from the two-channel filterbank.) We will
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TABLE I
STEADY-STATE MEAN SQUARE ERROR (SS-MSE) FOR THE ADAPTIVE FILTERING SYSTEM IN EXAMPLE 4 EQUIPPED WITH PROTOTYPE FILTERS FROM EXAMPLE 3
(SEE FIG. 5). ALSO INCLUDED ARE THE NORMALIZED DISTORTION COEFFICIENT , THE MAXIMUM RELATIVE STOPBAND LEVEL BELOW

(REL. SBL), AND THE NORMALIZED STOPBAND AND TRANSITION-BAND ENERGIES

restrict attention to interpolations of lowpass filters from the
standard Daubechies family [51] of orthonormal two-channel
filterbanks, the symlet family [51], and those obtained from
“windowed” ideal autocorrelations [52], [53]. We will choose
the minimum-phase spectral factor for the window-based
designs and will denote them by “MSB.” After evaluating the
performance of the standard data analysis windows [54], we
found that the “Blackmann–Harris” window [54, p. 65] is an
appropriate choice for the application at hand.

In the following example, we demonstrate how the proposed
formulations can provide prototype filters with significantly
better design tradeoffs than those generated by Harteneck’s
method and those generated by interpolation.

Example 3: In this example, we again consider a filterbank
with , , and length 48 filters. In Fig. 5, we provide
(with a dashed curve) the locus of normalized distortion coef-
ficient-stopband energy pairs ( , ) achieved by
Harteneck’s method [19] for different values of in (39). Here,

is the energy of the filter. For clarity, we have in-
dicated the points achieved by Harteneck’s method for specific
values of by the symbols on the dashed curve in Fig. 5. As one
would expect, increasing moves the achieved tradeoff toward
the bottom-right corner of the figure. Fig. 5 also contains the
tradeoff points achieved by interpolation of filters from certain
standard orthonormal two-channel filterbanks and the inherent
tradeoff (achieved by the proposed method) between the stop-
band energy and the distortion coefficient (indicated by the solid

Fig. 5. Tradeoffs between the normalized stopband energy and
the normalized distortion coefficient for Example 3. Solid: inherent
tradeoff [achieved by the proposed method, (41)]; dashed: tradeoff achieved by
Harteneck’s method [19]; dotted: tradeoff achieved by the proposed method
with additional constraints on the maximum spectral component and the
maximum relative stopband level (38). Dotted with , , and : relative
stopband level is 30 dB; dotted with , , and : relative stopband level is

33 dB. (The solid and dotted curves coincide with the corresponding curves
in Fig. 3.) The symbols , , , and indicate the tradeoffs achieved by
Harteneck’s method with 10 , 3.91 10 , 1.01, and 2.09,
respectively. The symbols , , and denote the tradeoffs achieved by
interpolating length-12 Daubechies, symlet, and MSB filters, respectively.
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curve). To obtain the inherent tradeoff, we solved an LMI ver-
sion of the problem:

(41a)

subject to

(41b)

for a range of values of . Over the range of distortion coeffi-
cients in Fig. 5, the solid curve coincides with the solid curve
in Fig. 3. (Note that for clarity the scale of Fig. 5 is slightly
different from that in Fig. 3.) However, when greater distor-
tion is allowed, the solid curve in Fig. 5 does not exhibit the
floor effect seen on the right of Fig. 3 because (41) does not
contain a constraint on the maximum spectral component. For
reference, we have also incorporated the dotted curves from
Fig. 3 into Fig. 5. These curves correspond to the stopband en-
ergy versus distortion tradeoff subject to bounds on the max-
imum spectral component and the maximum relative stopband
level and were obtained by solving (38). The power spectra
of representative filters are provided in Fig. 6. (We selected
the interpolated symlet [symbol ] rather than the interpolated
Daubechies’ filter [symbol ] because it achieves a superior
tradeoff.) In addition, the power spectra of filters that achieve
the tradeoffs denoted by the , , and in Fig. 5 are given in
Fig. 4.

It is clear from Fig. 5 that by optimizing the prototype and
avoiding the phase linearity constraint, the proposed method
provides a significantly better tradeoff between stopband en-
ergy and distortion.7 In particular, the dotted curves in Fig. 5 de-
note the stopband-energy versus distortion coefficient tradeoff
achieved by filters that must also satisfy rather stringent spec-
tral masks. Despite the fact that these filters satisfy this addi-
tional constraint, for a given distortion coefficient, they (almost
always) achieve a lower stopband energy than the filter designed
using Harteneck’s method.

To verify that the improved tradeoffs achieved by the proposed
method in Example 3 (see Fig. 5) can generate significant
performance gains for the subband signal processing system
as a whole, we now examine the performance of the simple
subband adaptive filtering system illustrated in Fig. 7. The
purpose of the subband adaptive filter (bounded by the dash-dot
polygon in Fig. 7) is to approximate the impulse response of
an unknown system . This configuration is often called
a “system identification” configuration, as is commonly used
in acoustic echo cancellation (AEC) applications [13]–[17],
[20]–[22]. The subband adaptive filter operates by passing the
(known) input signal and noisy measurements of
the output of the unknown system through separate analysis
filterbanks. (The sequence denotes the noise.) The subband
processing block is a diagonal matrix of standard adaptive
filters, each of which operates (independently of the other
filters) on one of the subband signals. (The elements that
process the th subband are enclosed in the dotted box in

7Recall that the proposed method actually achieves the inherent tradeoff in
the sense that no length 48 filter can achieve any point below the (solid) curve
generated by the proposed method.

Fig. 6. Power spectra (in decibels) of filters that achieve the stopband energy
versus distortion coefficient tradeoffs indicated by the , , and in Fig. 5.
For clarity, the stopband edge is indicated by the dotted line.

Fig. 7, where the dashed line indicates that the error signal
drives the adaptation of .) The filtered subband

signals are then reconstructed, and as the filter converges,
approximates a delayed version of . Although Fig. 7

indicates that adaptive filtering is performed in every subband,
if and are real, is even, and if we insert a real part
operator and a gain of two between the synthesis filterbank
and the summer (i.e., if Re ),
then we can perform adaptive filtering on only of the
subbands and obtain the same performance [16], [17], [19].
If we choose in (1), we need only filter subbands

. The resulting reduction in computational
load has a significant impact in practice, and we will use this
reduced-complexity system in the following simulations.
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Fig. 7. Subband adaptive filtering system (enclosed by the dash-dot polygon) used in Example 4. For clarity, only one element of the (diagonal) subband processing
block is shown (in the dotted box). The symbols AFB and SFB denote the analysis and synthesis filterbanks, respectively, is the impulse response of the
unknown system, and is the impulse response of the adaptive filter in the th subband at the th instant.

Example 4: In this example, we examine the performance
of the subband adaptive filter in Fig. 7 equipped with the GDFT
filterbanks designed in Example 3 (see Fig. 5) in a synthetic
acoustic echo cancellation (AEC) environment. Recall that
the proposed method generates the optimal autocorrelation
sequence from which an optimal filter can be obtained using
standard spectral factorization techniques [30], [35]. For sim-
plicity, we only report results for the minimum-phase spectral
factor, but other experiments have indicated that in the scenario
of this example, the performance variation over the different
spectral factors tends to be small compared with the perfor-
mance variations in Table I. In synthesizing the filterbanks
from the prototype filter using (1), we chose so
that we need only implement the adaptive filters in subbands

, and we chose , so that if
has linear phase (as it does in Harteneck’s designs), then

all the filters in the filterbank also have linear phase.
We evaluate the average performance of the subband adap-

tive filter over a class of randomly generated unknown systems
of length 60 whose impulse response coefficients tend to

decay exponentially. More specifically, ,
. This class of unknown systems shares many of the

characteristics of the acoustic impulse response encountered in
practical AEC applications. The adaptive filters have
length 10 and are adapted using the normalized least-mean
square (NLMS) algorithm [55], with step-size coefficient

. The input signal is a (real) zero-mean white
Gaussian signal of unit variance, and in order to isolate the
performance of the filterbank, no noise was injected into the
measured signal , i.e., .

The steady-state mean square error (SS-MSE), averaged
over 10 000 realizations of the unknown system and the input
signal, for systems based on filters that achieve the marked
tradeoffs in Fig. 5, is provided in Table I. For convenience, we
have listed, in Table I, the (normalized) distortion coefficient,
the relative stopband level, and the (normalized) stopband

Fig. 8. Tradeoffs between the normalized stopband energy and
the normalized distortion coefficient for Example 5. Legend—solid:
proposed method, without a constraint on the transition-band energy (TBE);
dashed: Harteneck’s method [19]; other curves: proposed method with the
TBE constrained to be less than times that achieved by the interpolated
symlet; dotted: ; dash-dot: . The symbols , , and denote
the tradeoffs achieved by interpolated length-12 Daubechies, symlet, and MSB
filters, respectively.

and transition-band energies of each filter. From Table I, it is
clear that for a given distortion coefficient, the lower stopband
and transition-band energies achieved by the simplest of the
proposed formulations [which has no spectral mask (41)] result
in a substantial improvement in the SS-MSE over that achieved
by the corresponding interpolated filters, and a significant
improvement over that achieved by the corresponding filter
designed by Harteneck’s method. Table I also shows that our
standard formulation [(30) or (38)] with a mild constraint on
the maximum stopband level results in further performance
improvement. For example, the filter with the symbol has
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an SS-MSE that is around 3.4 dB lower than that of the inter-
polated symlet (symbol ) and around 1.6 dB lower than that
of the corresponding filter from Harteneck’s method (symbol

). However, if the maximum stopband level constraint is
too stringent, and the resulting increase in the stopband and
transition-band energies is too large, then the SS-MSE begins
to increase. It can also be observed from Table I that as the
distortion constraint is relaxed from , the performance
of the filters from each design method improves, but as this
constraint becomes rather loose, the performance begins to
degrade. Finally, Table I justifies our earlier decision (in Sec-
tion V) to leave the transition-band energy constraint inactive
for this scenario. Even without a specific transition-band energy
constraint, the proposed method achieves a consistently lower
transition-band energy than the competing methods.

Although the steady-state mean square errors of the systems
in Table I might be regarded as being rather high, and although
the performance differences are quite subtle in places, Example
4 has validated the major principles of the proposed design
approach. First, the performance of a GDFT-filterbank-based
subband adaptive filtering system depends on the properties of
the prototype filter that we derived in Section III, namely, the
stopband energy, the maximum stopband level, the distortion
coefficient, and the transition-band energy; and second, to
obtain optimized performance from the subband adaptive filter
in a particular application, we should explore the tradeoffs
between these quantities. The proposed formulation [(30) or
(38)] provides an efficient method for evaluating these tradeoffs
and, hence, should be a convenient tool for system designers.

The performance of the system in Example 4 can be signifi-
cantly improved by using longer prototype filters or by reducing
the downsampling factor , although both actions will increase
the implementation complexity of the system. Increasing the
filter length to 200 results in SS-MSEs of around 27.1 dB for
the interpolated symlet, and 28.6 dB and 29.7 dB for Harte-
neck’s method and the proposed method, respectively, with the
same distortion coefficient as the interpolated symlet; see [47]
for the details. A reduction in the downsampling factor is con-
sidered in the following example.

Example 5: We consider the subband adaptive filtering
system from Example 4 but with a downsampling factor of

. The tradeoffs between the (normalized) stopband
energy and distortion coefficient achieved by the three design
methods are illustrated in Fig. 8. For the proposed method,
we set the maximum spectral component constraint in the
same way as in Example 1, and the maximum stopband level
constraint was chosen to be that achieved by the interpolated
symlet. (This constraint is inactive in the figure, as suggested
by Table II.) The focus of this example is on the effects
of the transition-band energy on the system performance.
The solid, dotted, and dash-dot curves in Fig. 8 indicate the
inherent tradeoffs (achieved by the proposed method) under
different constraints on the transition-band energy. It is clear
from Fig. 8 that (in this example) different constraints on the
transition-band energy result in significantly different tradeoffs
between the stopband energy and the distortion. In particular,
Harteneck’s method [19], which does not explicitly control the
transition-band energy, achieves a tradeoff (indicated by the

Fig. 9. Output mean square error (averaged over 1000 realizations) for
Example 5. The symbols correspond to those in Table II and Fig. 8. The two
curves without symbols correspond to Harteneck’s method (marginally upper
curve, symbol ) and the interpolated symlet (marginally lower curve, symbol

).

dashed curve) that is superior to that which can be achieved
by any design method that imposes the transition-band energy
constraints that we have chosen. (Recall that the proposed
method achieves the inherent tradeoff for the given constraints,
which is indicated by the dotted and dash-dot curves.) How-
ever, as illustrated in Table II and Fig. 9, filters designed via
Harteneck’s method may have rather large transition-band
energies, and hence, improved state-state mean square error
can be obtained using filters designed by the proposed method.
(Since in this example, we have used length 15 adaptive
filters in the subbands in place of the length 10 adaptive filters
in Example 4.) In particular, Table II indicates that for the
same distortion coefficient as the interpolated symlet, the filter
designed by Harteneck’s method (symbol ) performs only
marginally better than the interpolated symlet (symbol ). The
filter designed by the proposed method without constraints
on the transition-band energy (symbol ) performs a little
better (a gain of 0.7 dB in the SS-MSE). Constraining the
transition-band energy of the filter to be less than or equal to
that of the interpolated symlet improves performance by more
than 1.3 dB (for a total gain over the interpolated symlet and
Harteneck’s method of around 2 dB, symbol ), but overcon-
straining the transition-band energy results in a degradation in
performance (symbol ).

If the required normalized distortion coefficient is reduced
to , the same trends apply, but the performance of filters
designed by the proposed method improves, and their perfor-
mance advantages increase. (The performance of Harteneck’s
filters actually degrades; symbol .) In particular, the filter in-
dicated by the symbol has a SS-MSE that is around 3.2 dB
lower than that achieved by the interpolated symlet (symbol )
and 3.3 dB lower than that achieved by the corresponding filter
designed by Harteneck’s method (symbol ). The convergence
of the (averaged) output MSE of the subband adaptive filtering
system for these and other representative filters is provided in
Fig. 9.
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TABLE II
PROTOTYPE FILTER CHARACTERISTICS AND STEADY-STATE MEAN SQUARE ERROR (SS-MSE) FOR THE ADAPTIVE FILTERING SYSTEM IN EXAMPLE 5

VII. CONCLUSIONS

In this paper, we have derived explicit bounds on the aliasing
in the subbands and the output, the distortion, and the imaged
subband errors of an oversampled near perfect reconstruction
(and near paraunitary) GDFT filterbank. We have shown that
the design of a prototype filter that optimizes these bounds can
be formulated as a convex optimization problem from which
a globally optimal filter can be efficiently obtained. The key
to developing the convex formulation was to show that the
performance objectives can be written as linear and convex
quadratic functions of the autocorrelation sequence of the filter.
We showed that the convex formulation allows efficient and
accurate exploration of the inherent tradeoffs in the design and
generates filters with significantly improved performance over
two current techniques. Since the intersection of convex sets is
itself convex, the proposed method is quite flexible, and several
other performance objectives can be incorporated into the
design [47], [56]; see also [30], [31], [34], and [48]. Further-
more, it appears that variations on the proposed method may
also be applicable to the design of windows for oversampled
short-term Fourier transforms that form a “snug” frame [57]
and the design of filtered multitone modulation schemes [58].

APPENDIX

DERIVATION OF (28)

Given (23)

(42)

Now

(43)

where we have used the Poisson sum formula. Hence

(44)

Equation (28) then follows from the normalization of the proto-
type filter and the definition of .
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