COMP ENG 4TL4 – Digital Signal Processing

Homework Assignment #3

Submission deadline: 12 noon on Friday, October 31, 2003, in the designated drop box in CRL-101B (the CRL photocopying room).

1. Consider an LTI system that is stable and for which H(z), the z-transform of the impulse response is given by:

$$H(z) = \frac{3}{1 + \frac{1}{3}z^{-1}}.$$

Suppose x[n], the input to the system, is the unit step sequence u[n].

- a. Find the output y[n] by directly evaluating the discrete convolution of x[n] and h[n] in the time domain.
- b. Find the output y[n] by calculating the inverse z-transform of Y(z). (20 pts)
- 2. Sketch each of the following sequences and determine their *z*-transforms, including the region of convergence (ROC).

a.
$$\sum_{k=-\infty}^{\infty} \delta[n-4k]$$

b.
$$\frac{1}{2} \left[e^{j\pi n} + \cos\left(\frac{\pi}{2}n\right) + \sin\left(\frac{\pi}{2} + 2\pi n\right) \right] u[n]$$
 (20 pts)

3. When the input to an LTI system is:

$$x[n] = \left(\frac{1}{2}\right)^n u[n] + 2^n u[-n-1],$$

the output is:

$$y[n] = 6\left(\frac{1}{2}\right)^n u[n] - 6\left(\frac{3}{4}\right)^n u[n].$$

- a. Find the transfer function H(z) of the system. Plot the poles and zeros of H(z) and indicate the ROC.
- b. Find the impulse response h[n] of the system.
- c. Write the LCCD equation that characterizes the system.
- d. Is the system stable? Is it causal?

Continued on the next page!

(40 pts)

4. Consider a real finite-length sequence x[n] with Fourier transform $X(e^{j\omega})$ and DFT X[k]. If:

$$Im\{X[k]\}=0, k=0,1,...,N-1,$$

can we conclude that:

$$Im\left\{X\left(e^{j\omega}\right)\right\}=0, \quad -\pi\leq\omega\leq\pi?$$

State your reasoning if your answer is yes. Give a counterexample if your answer is no. (10 pts)

5. Two finite-length sequences $x_1[n]$ and $x_2[n]$ are shown in the figure below. Sketch their *N*-point circular convolution for:

a.
$$N = 6$$
, and
b. $N = 10$.
(10 pts)
 $x_1[n]$
 $x_2[n]$
 $x_2[n]$

п

0

1 2

3 4

Continued on the next page!

0 1

2

3 4 5

п

Sequence	Transform	ROC
1. $\delta[n]$	1	All z
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $a^{n}u[n]$	$\frac{1}{1-az^{-1}}$	z > a
6. $-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
7. $na^n u[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
8. $-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r
13. $\begin{cases} a^n, & 0 \le n \le N-1, \\ 0, & \text{otherwise} \end{cases}$		z > 0

TABLE 3.1SOME COMMON z-TRANSFORM PAIRS

TABLE 3.2	SOME <i>z</i> -TRANSFORM PROPERTIES

Property Number	Section Reference	Sequence	Transform	ROC
		<i>x</i> [<i>n</i>]	X(z)	R_x
		$x_1[n]$	$X_1(z)$	R_{x_1}
		$x_2[n]$	$X_2(z)$	R_{x_2}
1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible addition or deletion of the origin or ∞
3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
4	3.4.4	nx[n]	$-z\frac{dX(z)}{dz}$	R_x , except for the possible addition or deletion of the origin or ∞
5	3.4.5	$x^*[n]$	$X^*(z^*)$	R_x
6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Contains R_x
7		$\mathcal{J}m\{x[n]\}$	$\frac{1}{2j}[X(z) - X^*(z^*)]$	Contains R_x
8	3.4.6	$x^{*}[-n]$	$X^{2J} X^{*}(1/z^{*})$	$1/R_x$
9	3.4.7	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
10 3.4.8		Initial-value theorem:		
		$x[n] = 0, n < 0 \qquad \lim_{z \to \infty} X(z) = x[0]$]	