COMP ENG 4TL4 - Digital Signal Processing

Homework Assignment \#3

Submission deadline: $\quad 12$ noon on Friday, October 31, 2003, in the designated drop box in CRL-101B (the CRL photocopying room).

1. Consider an LTI system that is stable and for which $H(z)$, the z-transform of the impulse response is given by:

$$
H(z)=\frac{3}{1+\frac{1}{3} z^{-1}}
$$

Suppose $x[n]$, the input to the system, is the unit step sequence $u[n]$.
a. Find the output $y[n]$ by directly evaluating the discrete convolution of $x[n]$ and $h[n]$ in the time domain.
b. Find the output $y[n]$ by calculating the inverse z-transform of $Y(z)$.
2. Sketch each of the following sequences and determine their z-transforms, including the region of convergence (ROC).
a. $\sum_{k=-\infty}^{\infty} \delta[n-4 k]$
b. $\frac{1}{2}\left[e^{j \pi n}+\cos \left(\frac{\pi}{2} n\right)+\sin \left(\frac{\pi}{2}+2 \pi n\right)\right] u[n]$
(20 pts)
3. When the input to an LTI system is:

$$
x[n]=\left(\frac{1}{2}\right)^{n} u[n]+2^{n} u[-n-1],
$$

the output is:

$$
y[n]=6\left(\frac{1}{2}\right)^{n} u[n]-6\left(\frac{3}{4}\right)^{n} u[n] .
$$

a. Find the transfer function $H(z)$ of the system. Plot the poles and zeros of $H(z)$ and indicate the ROC.
b. Find the impulse response $h[n]$ of the system.
c. Write the LCCD equation that characterizes the system.
d. Is the system stable? Is it causal?

Continued on the next page!
4. Consider a real finite-length sequence $x[n]$ with Fourier transform $X\left(e^{j \omega}\right)$ and DFT $X[k]$. If:

$$
\operatorname{Im}\{X[k]\}=0, \quad k=0,1, \ldots N-1,
$$

can we conclude that:

$$
\operatorname{Im}\left\{X\left(e^{j \omega}\right)\right\}=0, \quad-\pi \leq \omega \leq \pi ?
$$

State your reasoning if your answer is yes. Give a counterexample if your answer is no.
5. Two finite-length sequences $x_{1}[n]$ and $x_{2}[n]$ are shown in the figure below. Sketch their N-point circular convolution for:
a. $\quad N=6$, and
b. $N=10$.

Continued on the next page!

TABLE 3.1 SOME COMMON z-TRANSFORM PAIRS

Sequence	Transform	ROC
1. $\delta[n]$	1	All z
2. $u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
4. $\delta[n-m]$	z^{-m}	$\begin{aligned} & \text { All } z \text { except } 0(\text { if } m>0) \\ & \text { or } \infty(\text { if } m<0) \end{aligned}$
5. $a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
6. $-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
7. $n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
8. $-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
9. $\left[\cos \omega_{0} n\right] u[n]$	$\frac{1-\left[\cos \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}}$	$\|z\|>1$
10. $\left[\sin \omega_{0} n\right] u[n]$	$\frac{\left[\sin \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}}$	$\|z\|>1$
11. $\left[r^{n} \cos \omega_{0} n\right] u[n]$	$\frac{1-\left[r \cos \omega_{0}\right] z^{-1}}{1-\left[2 r \cos \omega_{0}\right] z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
12. $\left[r^{n} \sin \omega_{0} n\right] u[n]$	$\frac{\left[r \sin \omega_{0}\right] z^{-1}}{1-\left[2 r \cos \omega_{0}\right] z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
13. $\begin{cases}a^{n}, & 0 \leq n \leq N-1, \\ 0, & \text { otherwise }\end{cases}$	$\frac{1-a^{N} z^{-N}}{1-a z^{-1}}$	$\|z\|>0$

TABLE 3.2 SOME z-TRANSFORM PROPERTIES

