
COMP ENG 4TL4 – Digital Signal Processing 

Solutions to Homework Assignment #4 

1. The figure below shows the pole-zero plot for a causal LTI system with a real-valued impulse 
response.  Indicate which of the following properties apply to this system, justifying each 
answer: 

i. stable 
ii. FIR 

iii. minimum phase 
iv. all-pass 
v. generalized linear phase (20 pts) 

z-plane

Im

Re

 
i. stable?  No.  For a causal system to be stable, all the poles must lie within the unit circle. 

ii. FIR?  No.  FIR systems can only have implicit poles at z = 0 or z = ∞. 
iii. minimum phase?  No.  Minimum-phase systems have all poles and zeros inside the unit circle. 
iv. all-pass?  No.  All-pass systems have poles and zeros in conjugate reciprocal pairs. 
v. generalized linear phase?  No.  IIR filters with rational system functions cannot be 

generalized linear phase. (20 pts) 
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2. A causal LTI system has the transfer function: 
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a. Find transfer functions for a minimum-phase system  and an all-pass system 

 such that: 
( )1H z

( )apH z

( ) ( ) ( )1 ap .H z H z H z=  

b. Sketch the pole-zero plots of ,  and , indicating their ROCs. (20 pts) ( )H z ( )1H z ( )apH z

a. The system  has a pair of conjugate nonminimum-phase zeros at z = ±2j.  To form the 

minimum-phase system , these zeros must be reflected to their conjugate reciprocal 
locations at z = ±0.5j, giving: 
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In order for  to equal , the all-pass system  must have the pair of 

conjugate nonminimum-phase zeros at z = ±2j from  and a pair of poles at the conjugate 
reciprocal locations z = ±0.5j, giving: 

( ) ( )1 apH z H z ( )H z ( )apH z
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b. The pole-zero plots of ,  and , with their ROCs, are given below. ( )H z ( )1H z ( )apH z
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3. Let [ ]lph n  denote the impulse response of an FIR generalized linear-phase lowpass filter.  The 
impulse response h  of an FIR generalized linear-phase highpass filter can be obtained by 
the transformation: 

[ ]hp n

[ ] ( ) [ ]1 .n
hp lph n h n= −  

If we wish [ ]hp nh  to be symmetric or antisymmetric, could we use a Type IV FIR generalized 
linear-phase filter for [ ]lph n ?  Justify your answer. (20 pts) 

No.  A Type IV FIR filter transformed according to the equation given above would produce a 
Type II FIR filter, which cannot be highpass because of its zero at z = –1 → ω = π. 
For example: 

0
1 2

3
n

Type II

0 1
2 3 n

Type IV

 

We can also note that a Type IV FIR filter cannot be lowpass because of its zero at z = 1 → ω = 0, 
so it would be impossible to design a lowpass Type IV FIR filter in the first place. 
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4. Use the bilinear transformation IIR filter design method to design a discrete-time 2nd-order 
lowpass Butterworth filter with cutoff frequency ωc = π/4 radians, assuming a sampling 
frequency fs = 4 kHz. 

a. Give details of each step of the design procedure and give the analog and digital filter 
transfer functions H  and , respectively, making sure that you simplify your 

expression for H z  so that its numerator and denominator are either (i) products of 

factors in terms of the explicit poles and zeros of H z  or (ii) polynomials in descending 
negative powers of z. 

( )c s

( )
( )H z

( )

b. Does the assumed sampling frequency of fs = 4 kHz have any effect on your expression for 
?  Why or why not? (20 pts) ( )H z

a. The first step is to find the prewarped analog cutoff frequency Ωc corresponding to ωc: 
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The second step is to design a 2nd-order (N = 2) analog Butterworth filter H  with cutoff 
frequency Ω
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The third step is to apply the bilinear transformation and simplify the expression for the 
z-domain transfer function : ( )H z
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or normalizing the transfer function such that a[0] = 1 gives: 
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or expressing the transfer function in terms of its explicit poles and zeros gives: 
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b. No.  We see in the derivation above (in the step indicated by the arrow) that the sampling 
period T cancels out of the expression for H z .  This will always be the case when we start 
with the filter specifications for the digital filter.  The frequency axis is prewarped in step 1 and 
then warped back again with the inverse warping in step 3, so the sampling period T has no 
effect. 

( )
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5. A causal LTI system has the transfer function: 
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Draw the block diagrams for this filter implemented in: 

a. direct form II (canonical form), and 

b. parallel form with 1st-order subsystems. (20 pts) 

a. Direct form II can be obtained directly from the transfer function. 

direct form II/
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parallel form using

1st-order subsystems
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b. The parallel form can be obtained by partial fraction expansion of the transfer function: 
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