
COMP ENG 4TL4:

Digital Signal Processing

Notes for Lecture #17
Wednesday, October 15, 2003



2

Frequency shift (modulation):

Proof: Similar to that for the circular shift property.
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Parseval theorem:

Proof: Using the matrix formulation of the DFT, we obtain:
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Conjugation:

Proof:
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Circular convolution:

Here ~ stands for circular convolution, defined by:
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Illustration of circular convolution for N = 8:
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Example #1: Consider the circularly convolved sequences:

giving z[n] = x[n] ~ y[n].  Then:
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Example #1 (cont.):
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Example #1 (cont.): Illustration of the circular convolution 
process:
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Circular convolution and linear convolution:
– A consequence of the circular convolution property is that circular 

convolution in the time domain can be computed efficiently via 
multiplication in the Fourier domain.

– If two discrete-time sequences of length L and P, respectively, are 
zero-padded to length N, such that
N ≥ L + P−1, then the circular convolution of the sequences is equal
to the linear convolution of the sequences.

– If N < L + P−1, then the circular convolution of the sequences is a 
time-aliased version of the linear convolution of the sequences.
⇒ Sampling in the time-domain produces aliasing in the 
frequency domain, and sampling in the frequency-domain 
produces aliasing in the time domain!

– The upper two properties above allow efficient implementation of FIR 
filters in the Fourier domain on DSPs that have specialized hardware 
and/or software for computing DFTs.
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Example #2: Consider the two discrete-time sequences, (i) x[n]: a 
rectangular pulse of length 4, and (ii) y[n]: the sequence x[n] zero-padded 
to length 8.  The circular convolution of y[n] with itself is identical to the 
linear convolution of x[n] with itself, while the circular convolution of x[n]
with itself is a time-aliased version of the linear convolution of x[n] with 
itself.
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Proof of the circular convolution property:
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Multiplication:

Proof: Similar to that for the circular convolution property.
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