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6.7 FIR Filter Design
Transfer function:

Frequency response:

Advantages of FIR Filters:

– FIR filters are inherently stable
– they can be designed to have linear phase or generalized 

linear phase
– they are convenient to implement
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Impulse response truncation method:

Step 1: Choose the desired amplitude response 
according to the filter class (LP, HP, BP, BS)

Step 2: Choose the filter’s phase characteristics: integer 
or fractional group delay, initial phase

Step 3: Write the ideal frequency response as Hid(ω) = 
Aid(ω) exp{j(βid− ωαid)} and compute the ideal 
impulse response hid[n] using the inverse DTFT

Step 4: Truncate the impulse response by applying a 
rectangular window of length M+1:
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Example: Let the ideal lowpass frequency response be:

where the linear phase factor has been incorporated into the 
desired frequency response.
The corresponding ideal impulse response is:

hid[n] is symmetric around M/2, so applying a rectangular 
window of length M+1 will result in a linear-phase system of 
order M and length M+1 with the impulse response h[n] = 
hid[n], 0 · n · M.
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Truncated impulse response (M = 10) and corresponding 
approximation of the ideal lowpass frequency response:
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Truncated impulse response (M = 40) and corresponding 
approximation of the ideal lowpass frequency response:
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Truncated impulse response (M = 160) and corresponding 
approximation of the ideal lowpass frequency response:
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Gibbs phenomenon:

Oscillations at the edges of the pass- and stopband cannot 
be reduced by the increase of M!  For any M, these 
oscillations correspond to about 0.09 passband ripple and 
stopband attenuation parameters!

⇒ The impulse response truncation method is a simple but 
not very good method of filter design.

1.09

–0.09

The Gibbs phenomenon
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The effects of windowing on the actual frequency response:

In the preceding slides it was shown that truncation of an 
ideal impulse response by application of a rectangular 
window produces non-zero passband ripple and stopband
attenuation parameters.

However, the actual frequency response oscillates around the 
ideal frequency response, so we could consider a smoothing 
(i.e., averaging) operation in the frequency domain to reduce 
these oscillations.  If we convolve the frequency response 
with a smoothing function in the frequency domain, this is 
equivalent to windowing (multiplying) in the time domain.

However, we must be careful with our choice of windows if 
we want the resulting impulse response to remain 
(generalized) linear-phase.
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Alternative interpretation:
We may also view the truncation procedure as multiplication 
by a rectangular window in the time domain ⇒ convolution in 
the frequency domain of the ideal frequency response with 
the DTFT of the rectangular window.
You will recall from Lecture # 15 that the rectangular window 
has the narrowest mainlobe of the common window types.  
This narrow mainlobe produces a fairly sharp transition region 
in the achieved frequency response.
However, the rectangular window has the largest sidelobe
magnitudes – these sidelobes are the cause of the non-zero 
passband ripple and stopband attenuation in the truncation 
method.  Consequently, we may wish to use a window with 
smaller magnitude sidelobes to reduce the passband ripple 
and stopband attenuation, at the expense of have a less 
sharp transition region.
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FIR filter design using windows:

Step 1: Define the ideal frequency response as in the 
impulse response truncation method

Step 2: Obtain the impulse response hid[n] of this ideal 
filter as in the impulse response truncation 
method

Step 3: Compute the coefficients of the filter by:

where w[n] is some chosen window function.
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Window properties:
– windows are always real and symmetric, i.e., they must 

satisfy:

for either even or odd M. If the ideal FIR filter has linear 
phase, symmetric windows do not affect this property.

– windows must be positive to avoid any changes of 
sequence polarities

– a “good” window must satisfy the tradeoff between the 
width of the mainlobe and the magnitudes of the sidelobes
in the frequency domain

– a “good” window must have a smooth transition at the 
ends in order to reduce the Gibbs phenomenon

– the window length must correspond to the sequence 
length
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Classical window types (have been derived based on intuition 
and educated guesses):

– Rectangular window: (corresponds to natural truncation 
like in the impulse response truncation method!) 

– Triangular (or Bartlett) window:
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Bartlett window compared to the rectangular window in the 
frequency domain: (M = 40)
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– Hanning (or Hann) window:

– Hamming window:

– Blackman window:
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Hanning window compared to the rectangular window in the 
frequency domain: (M = 40)
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Hamming window compared to the rectangular window in the 
frequency domain: (M = 40)
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Blackman window compared to the rectangular window in the 
frequency domain: (M = 40)
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