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6.9 Structures for Digital Filters

A digital filter described by a particular LCCD equation (or the
corresponding z-domain transfer function) may be
implemented in a DSP using a variety of standard structures
made up of an interconnection of basic operations of addition,
multiplication by a constant, and unit delays.

These structures may differ in:

— the number of basic operations required to implement a
particular filter,

— their sensitivity to quantization of filter coefficient values
(for finite-precision arithmetic), or

— their sensitivity to round-off noise because of finite-
precision arithmetic.

As a tool for investigating these different structures, we will

utilize a block diagram representation of LCCD equations. ;



Block diagram representation of LCCD equations:

Using the basic building blocks shown below, a block diagram
can be constructed to describe any LCCD equation.
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Example #1: 1st-order FIR filter:
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This block diagram can be generalized to a higher-order FIR
filter of the form:
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Example #2: 2nd-order IIR filter:

yln] = ary[n — 1] + azy[n — 2] + box[n]

bo
= H(z) = 1 —a1z7 1 —arz=2
b
>0 + >
x[n) \ yin)
.
T yin-11
< ) yin
7!
a

A
[\
=

T
(S




Direct form |. These block diagrams can be generalized to a
higher-order difference equations of the form:
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This difference equation form is related to the standard
ARMA system equation:
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for the case of M = N.

If M # N in the standard ARMA equation, then the order N of the direct
form | equation should be set to max (M, N) and the appropriate
coefficients a, or b, should be set to zero to achieve equivalence.



Direct form Il: Note that direct form | can be viewed as two
separate LTI subsystems placed in series, requiring a total of
2N unit delays.

Reversing the order of LTI subsystems does not affect the
overall transfer function, so the unit delays from each
subsystem can be combined, requiring a total of only NV unit

delays.
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Example #3: 2nd-order IIR filter:
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Transposed forms: It is also possible to reverse the order of

all the operations, leading to transposed direct forms | and Il.
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Cascade form: A high-order rational transfer function can be
reformulated to be the product of 2"d-order factors, leading
the 2nd-order subsystem cascade form:
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where N, is the largest integer contained in (N+1)/2.

4-order filter implemented in cascade form
with direct form |l 2"-order subsystems
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Parallel form: Partial fraction expansion of a transfer function

leads to the parallel form, e.g.:
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