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6.9 Structures for Digital Filters
A digital filter described by a particular LCCD equation (or the
corresponding z-domain transfer function) may be 
implemented in a DSP using a variety of standard structures 
made up of an interconnection of basic operations of addition, 
multiplication by a constant, and unit delays.

These structures may differ in:
– the number of basic operations required to implement a 

particular filter,
– their sensitivity to quantization of filter coefficient values 

(for finite-precision arithmetic), or
– their sensitivity to round-off noise because of finite-

precision arithmetic.

As a tool for investigating these different structures, we will 
utilize a block diagram representation of LCCD equations.



3

Block diagram representation of LCCD equations:

Using the basic building blocks shown below, a block diagram 
can be constructed to describe any LCCD equation.
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Example #1: 1st-order FIR filter:
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This block diagram can be generalized to a higher-order FIR 
filter of the form:
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Example #2: 2nd-order IIR filter:
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Direct form I: These block diagrams can be generalized to a 
higher-order difference equations of the form:
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This difference equation form is related to the standard 
ARMA system equation:

via the relationships:

for the case of M = N.
If M ≠ N in the standard ARMA equation, then the order N of the direct 
form I equation should be set to max(M,N) and the appropriate 
coefficients ak or bk should be set to zero to achieve equivalence.
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Direct form II: Note that direct form I can be viewed as two 
separate LTI subsystems placed in series, requiring a total of 
2N unit delays.

Reversing the order of LTI subsystems does not affect the 
overall transfer function, so the unit delays from each 
subsystem can be combined, requiring a total of only N unit 
delays.
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Example #3: 2nd-order IIR filter:
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Transposed forms: It is also possible to reverse the order of 
all the operations, leading to transposed direct forms I and II.
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Cascade form: A high-order rational transfer function can be 
reformulated to be the product of 2nd-order factors, leading 
the 2nd-order subsystem cascade form:

where Ns is the largest integer contained in (N+1)/2.
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Parallel form: Partial fraction expansion of a transfer function 
leads to the parallel form, e.g.:
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