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6.3 Spectral Estimation of Stationary
Random Signals

Definition of the power spectral density (PSD) for a finite-
power random signal:
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The Periodogram:

In the task of spectral estimation, we wish to obtain an 
estimate of the PSD from a single sequence x[n],
i.e., without having to calculate an expected value E{·} as is 
required for computing the PSD.

An obvious estimator of the PSD that can be obtained using 
the DTFT of a windowed sequence x[n]w[n], where w[n] is a 
rectangular window of length L, is the periodogram:
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Properties of the periodogram:

– it can be computed for equally-spaced frequencies using 
the FFT with zero-padding

– its variance:

That is, its variance is quite large and it does not reduce 
with increasing L for a stationary random signal!

⇒ this is our second case for which increasing the window 
length does not improve spectral estimation
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Example #1:

where f0 = 0.3 and ξ[n] is a zero-mean, unit-variance 
complex white Gaussian noise.  Note that x[n] consists of a 
deterministic (nonrandom) complex exponential and a white 
(flat-spectrum) stationary noise.
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Example #1 (cont.):

The contribution of the deterministic component of x[n] to the 
periodogram increases with increasing L, but the contribution 
of the stationary random component does not increase.
⇒ spectral estimation of the deterministic component

improves with increasing L
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Example #2: Let x[n], a zero-mean, unit-variance white 
Gaussian noise, be filtered by a lowpass filter with the 
magnitude-squared frequency response indicated by the red 
line in the plots below to give the lowpass Gaussian noise 
signal y[n].  The periodogram of one realization of y[n] is:

Note that the PSD of y[n] is equal to the filter’s magnitude-squared 
frequency response (indicated by the red line), but the periodogram of y[n]
does not converge to the PSD with increasing L.

0 0.5
0

1

2

3

4

5
L = 100

P
er

io
do

gr
am

0 0.5
0

1

2

3

4

5
L = 1,000

0 0.5
0

1

2

3

4

5
L = 10,000

ω/2π ω/2π ω/2π



8

Periodogram Averaging:

Comparing the equations for the PSD and the periodogram, 
we see that the problem with the variance of the periodogram 
arises because it does not include the expectation operation 
E{·}.

However, we can approximate this operation for a stationary
random signal by breaking it up into a set of shorter 
segments, calculating the periodogram for each segment and 
then averaging the results.  The basis of this methodology is:
– the periodogram of a short segment of the sequence will have a 

variance not much larger than the periodogram of the whole 
sequence

– the signal is stationary, so its PSD is identical for the different 
segments

– if the random signal is relatively uncorrelated, then the periodograms 
are relatively independent random variables, so the averaging 
process reduces the estimator’s variance
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The Bartlett periodogram method:

Based on dividing the original sequence into K = L/M
nonoverlapping segments of length M, computing 
periodogram for each segment, and averaging the result:

x0[n] x1[n] xK–1[n]

x[n]
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If the K periodograms in the Bartlett method are independent, 
then the variance of the Bartlett average periodogram:

That is, its variance decreases with increasing K!
Example #3: The Bartlett periodogram with M = 20 for the 
same signal as in Example #2, where the blue and green 
lines represent the periodograms for two different realizations 
of y[n]:
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The Welch periodogram method:

Refines the Bartlett method by dividing the original sequence 
into K overlapping segments of length M.
Welch showed that:
– if the segments overlap by 50%, then the variance is reduce by 

almost of factor of 2 compared to the Bartlett method, because of the 
doubling in the number of sections

– increasing the overlap by more than 50% does not further reduce the 
variance, because the segments become less and less independent

– the variance still behaves the same if a nonrectangular window is 
used → the modified periodogram

x0[n] x1[n] xK–1[n]

x[n]
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Example #4: The Welch periodogram with M = 20 and 50% 
overlap for the same signal as in Example #2, where the blue 
and green lines represent the periodograms for two different 
realizations of y[n]:

Note that the variance has decreased only slightly from that 
of the Bartlett method because the lowpass noise is 
somewhat correlated.
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