## COMP ENG 4TL4:

## Digital Signal Processing

Notes for Lecture \#5
Wednesday, September 17, 2003

## 2. TIME-DOMAIN ANALYSIS 2.1 Linear Time-Invariant (LTI) Systems

Definition of a system:

$$
y[n]=\mathcal{T}\{x[n]\}
$$

where $\mathcal{T}\{\cdot\}$ is an operator that maps an input sequence $x[n]$ into an output sequence $y[n]$.

Linear system:
A system is linear if it obeys the principle of superposition.
Principle of superposition:
If the input of a system contains the sum of multiple signals, then the output of this system is the sum of the system responses to each separate signal.

A system is linear if and only if:

$$
\begin{aligned}
\mathcal{T}\left\{a x_{1}[n]+b x_{2}[n]\right\} & =a \mathcal{T}\left\{x_{1}[n]\right\}+b T\left\{x_{2}[n]\right\} \\
& =a y_{1}[n]+b y_{2}[n]
\end{aligned}
$$



Example: Let $y[n]=x^{2}[n]$ (i.e., $\left.\mathcal{T}\{\cdot\}=(\cdot)^{2}\right)$. Then,

$$
\begin{aligned}
\mathcal{T}\left\{x_{1}[n]+x_{2}[n]\right\} & =x_{1}^{2}[n]+x_{2}^{2}[n]+2 x_{1}[n] x_{2}[n] \\
& \neq x_{1}^{2}[n]+x_{2}^{2}[n]
\end{aligned}
$$

Hence, this system is nonlinear!
A time-invariant system has properties unvarying with time,i.e.:

$$
\text { if } \quad y[n]=\mathcal{T}\{x[n]\} \quad \Rightarrow \quad y[n-k]=T\{x[n-k]\} .
$$

A Linear Time-Invariant (LTI) system is both linear and time-invariant - sometimes referred to as a Linear ShiftInvariant (LSI) system.

### 2.2 Digital Signals via Impulse Functions



Let $h[n]$ be the response to $\delta[n]$ of the $\underline{L T I}$ system with transform $\mathcal{T} \cdot\}$.
Due to the time-invariance property, the response to $\delta[n-k]$ is simply $h[n-k] \Rightarrow$

$$
\begin{aligned}
y[n] & =\mathcal{T}\{x[n]\} \\
& =T\left\{\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]\right\} \\
& =\sum_{k=-\infty}^{\infty} x[k] \mathcal{T}\{\delta[n-k]\} \\
& =\sum_{k=-\infty}^{\infty} x[k] h[n-k] \\
& =x[n] * h[n] \quad \text { convolution sum. }
\end{aligned}
$$

The sequence $h[n]$ is commonly referred to as impulse response of the LTI system.



An important property of convolution:

$$
\begin{aligned}
x[n] * h[n] & =\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=-\infty}^{\infty} h[k] x[n-k] \\
& =h[n] * x[n]
\end{aligned}
$$

$\Rightarrow$ the order in which two sequences are convolved is unimportant!

## Other properties of convolution:

$$
\begin{aligned}
& x[n] *\left\{h_{1}[n] * h_{2}[n]\right\} \\
= & \left\{x[n] * h_{1}[n]\right\} * h_{2}[n]
\end{aligned}
$$

associativity

$$
\begin{aligned}
& x[n] *\left\{h_{1}[n]+h_{2}[n]\right\} \\
= & x[n] * h_{1}[n]+x[n] * h_{2}[n]
\end{aligned}
$$

distributivity

Example: Convolution of two rectangles $x[n]$.

$$
y[n]=x[n] * x[n]
$$




