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3.2 Properties of the DTFT
Linearity:

Proof: Elementary (direct substitution).
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Example of DTFT linearity property:
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Time shifting:

Proof:
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Example of DTFT time-shifting property: m = 1
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Frequency shifting:

Proof:
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Time reversal:

Proof:
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Example of DTFT time-reversal property:
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Differentiation in frequency:

Proof:
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Convolution theorem:

Convolution of sequences in the time domain is equivalent to 
multiplication of the corresponding Fourier transforms in the 
frequency domain.
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Proof of convolution theorem:
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Windowing theorem:

Multiplication of sequences in the time domain is equivalent 
to periodic convolution of the corresponding Fourier 
transforms in the frequency domain.

Proof: by means of direct substitution, similarly to the proof of 
the convolution theorem.
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Example of DTFT windowing property:
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Generalized Parseval theorem:

Proof: similar to the proof of the Parseval theorem.
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Summary of the main properties of the DTFT



16

3.3 Frequency-Domain Representation
of Discrete-Time Signals and Systems

Recall the impulse response h[n] of an LTI system:

Consider an input sequence: x[n] = ejωn, −∞ < n <∞
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The complex function:

is called the frequency response or the transfer function of 
the system.

Remarks:

– The impulse response and transfer function represent a 
DTFT pair ⇒ H(ejω) is a periodic function.

– The transfer function shows how different input frequency 
components are changed (e.g., attenuated) at the system 
output

– This function will be very useful for the consideration of 
signal filtering ⇒ if y[n] = h[n]∗x[n], then Y(ejω) = 
H(ejω)X(ejω)
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LTI systeme jωn e jωn
H(ejω)

of impulseInterpretation
and frequency responses

systemLTI
h[n][n]δ
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Example: the delay system:

Since |H(ejω)| = 1, this system is frequency nonselective.  
Such systems are often referred to as allpass systems.  This 
was illustrated on slide #5.

(Examples of frequency selective systems will be given in Lab 
#2 and later in the course when the filtering operation is 
considered.)
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