COMP ENG 4TL4: Digital Signal Processing

Notes for Lecture #9 Friday, September 26, 2003

3.2 Properties of the DTFT

Linearity:

If
$$X(e^{j\omega}) = \mathcal{F}\{x[n]\}$$
 and $Y(e^{j\omega}) = \mathcal{F}\{y[n]\}$,
then $a X(e^{j\omega}) + b Y(e^{j\omega}) = \mathcal{F}\{a x[n] + b y[n]\}$.

Also, if
$$x[n] = \mathcal{F}^{-1}\left\{X\left(e^{j\omega}\right)\right\}$$
 and $y[n] = \mathcal{F}^{-1}\left\{Y\left(e^{j\omega}\right)\right\}$,
then $a x[n] + b y[n] = \mathcal{F}^{-1}\left\{a X\left(e^{j\omega}\right) + b Y\left(e^{j\omega}\right)\right\}$.

Proof: Elementary (direct substitution).

Example of DTFT linearity property:

Time shifting:

If
$$X(e^{j\omega}) = \mathcal{F}\{x[n]\}$$
 then $X(e^{j\omega}) e^{-j\omega m} = \mathcal{F}\{x[n-m]\}$.
Also, if $x[n] = \mathcal{F}^{-1}\{X(e^{j\omega})\}$,
then $x[n-m] = \mathcal{F}^{-1}\{X(e^{j\omega}) e^{-j\omega m}\}$.

Proof:

$$\mathcal{F}\{x[n-m]\} = \sum_{n=-\infty}^{\infty} x[\underbrace{n-m}] e^{-j\omega n} = \sum_{k=-\infty}^{\infty} x[k] e^{-j\omega(m+k)}$$
$$= e^{-j\omega m} \sum_{k=-\infty}^{\infty} x[k] e^{-j\omega k} = X(e^{j\omega}) e^{-j\omega m}$$
$$\mathcal{F}^{-1}\{X(e^{j\omega}) e^{-j\omega m}\} = \mathcal{F}^{-1}\{\mathcal{F}\{x[n-m]\}\} = x[n-m]$$

Example of DTFT time-shifting property: m = 1

Frequency shifting:

If
$$X(e^{j\omega}) = \mathcal{F}\{x[n]\}$$
 then $X(e^{j(\omega-\nu)}) = \mathcal{F}\{x[n] e^{j\nu n}\}$
Also, if $x[n] = \mathcal{F}^{-1}\{X(e^{j\omega})\}$,
then $x[n] e^{j\nu n} = \mathcal{F}^{-1}\{X(e^{j(\omega-\nu)})\}$.

Proof:

$$\mathcal{F}\left\{x[n]\,e^{j\nu n}\right\} = \sum_{n=-\infty}^{\infty} x[n]\,e^{-j(\omega-\nu)n} = X\left(e^{j(\omega-\nu)}\right)$$
$$\mathcal{F}^{-1}\left\{X\left(e^{j(\omega-\nu)}\right)\right\} = \mathcal{F}^{-1}\left\{\mathcal{F}^{-1}\left\{x[n]\,e^{j\nu n}\right\}\right\} = x[n]\,e^{j\nu n}$$

.

Time reversal:

If
$$X(e^{j\omega}) = \mathcal{F}\{x[n]\}$$
 then $X(e^{-j\omega}) = \mathcal{F}\{x[-n]\}$.
Also, if $x[n] = \mathcal{F}^{-1}\{X(e^{j\omega})\}$,
then $x[-n] = \mathcal{F}^{-1}\{X(e^{-j\omega})\}$.

Proof:

$$\mathcal{F}\{x[-n]\} = \sum_{n=-\infty}^{\infty} x[-n]e^{-j\omega n} = \sum_{m=-\infty}^{\infty} x[m]e^{j\omega m} = X(e^{-j\omega})$$
$$\mathcal{F}^{-1}\{X(e^{-j\omega})\} = \mathcal{F}^{-1}\{\mathcal{F}\{x[-n]\}\} = x[-n]$$

Example of DTFT time-reversal property:

8

Differentiation in frequency:

If
$$X(e^{j\omega}) = \mathcal{F}\{x[n]\}$$
 then $j\frac{dX(e^{j\omega})}{d\omega} = \mathcal{F}\{nx[n]\}$.
Also, if $x[n] = \mathcal{F}^{-1}\{X(e^{j\omega})\}$,
then $nx[n] = \mathcal{F}^{-1}\{j\frac{X(e^{j\omega})}{d\omega}\}$.
Proof:

$$\mathcal{F}\{n x [n]\} = \sum_{n=-\infty}^{\infty} nx [n] e^{-j\omega n} = j \sum_{n=-\infty}^{\infty} x[n] \frac{d(e^{-j\omega n})}{d\omega}$$

$$= j \frac{d}{d\omega} \left\{ \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \right\} = j \frac{dX(e^{j\omega})}{d\omega}$$

$$\mathcal{F}^{-1}\left\{ j \frac{dX(e^{j\omega})}{d\omega} \right\} = \mathcal{F}^{-1}\{\mathcal{F}\{nx[n]\}\} = nx[n]$$

If
$$X(e^{j\omega}) = \mathcal{F}\{x[n]\}$$
, $H(e^{j\omega}) = \mathcal{F}\{h[n]\}$,

and
$$y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k] = x[n] * h[n]$$
,

then
$$Y(e^{j\omega}) = \mathcal{F}\{y[n]\} = X(e^{j\omega}) H(e^{j\omega})$$
.

Convolution of sequences in the *time domain* is equivalent to *multiplication* of the corresponding Fourier transforms in the *frequency domain*.

Proof of convolution theorem:

$$Y(e^{j\omega}) = \mathcal{F}\{y[n]\} = \sum_{n=-\infty}^{\infty} \left\{ \sum_{k=-\infty}^{\infty} x[k] h[\underline{n-k}] \right\} e^{-j\omega n}$$

$$= \sum_{m=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k] h[m] e^{-j\omega(m+k)}$$

$$= \left\{ \sum_{k=-\infty}^{\infty} x[k] e^{-j\omega k} \right\} \left\{ \sum_{m=-\infty}^{\infty} h[m] e^{-j\omega m} \right\}$$

 $= X \! \left(\! e^{j\omega} \! \right) H \! \left(\! e^{j\omega} \! \right)$

Windowing theorem:

If
$$X(e^{j\omega}) = \mathcal{F}\{x[n]\}$$
, $W(e^{j\omega}) = \mathcal{F}\{w[n]\}$,
and $y[n] = x[n] w[n]$,
then $Y(e^{j\omega}) = \mathcal{F}\{y[n]\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\nu}) W(e^{j(\omega-\nu)}) d\nu$.

Multiplication of sequences in the *time domain* is equivalent to <u>periodic</u> *convolution* of the corresponding Fourier transforms in the *frequency domain*.

<u>Proof:</u> by means of direct substitution, similarly to the proof of the convolution theorem.

Example of DTFT windowing property:

Generalized Parseval theorem:

If
$$X(e^{j\omega}) = \mathcal{F}\{x[n]\}$$
, $Y(e^{j\omega}) = \mathcal{F}\{y[n]\}$,
then $\sum_{n=-\infty}^{\infty} x[n] y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) Y^*(e^{j\omega}) d\omega$.

<u>Proof:</u> similar to the proof of the Parseval theorem.

Summary of the main properties of the DTFT

Sequence x[n]	Fourier Transform $X\!\left(\!e^{j\omega} ight)$
a x[n] + b y[n]	$a X(e^{j\omega}) + b Y(e^{j\omega})$
$x^*[n]$	$X^*(e^{-j\omega})$
$x^*[-n]$	$X^*(e^{j\omega})$
x[n-m]	$e^{-j\omega m}X\!\left(\!e^{j\omega} ight)$
$e^{j u n}x[n]$	$X(e^{j(\omega-\nu)})$
x[-n]	$X(e^{-j\omega})$
n x[n]	$j rac{dX\!\!\left(\!e^{j\omega} ight)}{d\omega}$
x[n] * h[n]	$X\!\!\left(\!e^{j\omega} ight)H\!\left(\!e^{j\omega} ight)$
x[n] w[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\nu}) W(e^{j(\omega-\nu)}) d\nu$
$\sum_{n=-\infty}^{\infty} x[n] ^2$	$rac{1}{2\pi}\int_{-\pi}^{\pi}\left X\!\left(\!e^{j\omega} ight) ight ^{2}d\omega$
$\sum_{n=-\infty}^{\infty} x[n] y^*[n]$	${1\over {2\pi}} \int_{-\pi}^{\pi} X\!\!\left(\!e^{j\omega} ight) Y^*\!\!\left(\!e^{j\omega} ight) d\omega$

15

3.3 <u>Frequency-Domain Representation</u> of Discrete-Time Signals and Systems

Recall the impulse response h[n] of an LTI system:

$$y[n] = \sum_{k=-\infty}^{\infty} h[k] x[n-k]$$

Consider an input sequence: $x[n] = e^{j\omega n}, -\infty < n < \infty$

 $= e^{j\omega n} H(e^{j\omega})$

$$y[n] = \sum_{k=-\infty}^{\infty} h[k] e^{j\omega(n-k)} = e^{j\omega n} \left\{ \sum_{\substack{k=-\infty \\ =H(e^{j\omega})}}^{\infty} h[k] e^{-j\omega k} \right\}$$

The complex function:

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h[k] e^{-j\omega k}$$

is called the <u>frequency response</u> or the <u>transfer function</u> of the system.

Remarks:

- The impulse response and transfer function represent a DTFT pair $\Rightarrow H(e^{j\omega})$ is a periodic function.
- The transfer function shows how different input frequency components are changed (e.g., attenuated) at the system output
- This function will be very useful for the consideration of signal *filtering* \Rightarrow if y[n] = h[n] * x[n], then $Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$ ¹⁷

Interpretation of impulse and frequency responses

Example: the delay system:

$$y[n] = x[n - n_d]$$
 with fixed integer n_d
 $x[n] = e^{j\omega n} \Rightarrow y[n] = e^{j\omega(n - n_d)} \Rightarrow H(e^{j\omega}) = e^{-j\omega n_d}$

Since $|H(e^{j\omega})| = 1$, this system is *frequency nonselective*. Such systems are often referred to as <u>allpass</u> systems. This was illustrated on slide #5.

(Examples of *frequency selective* systems will be given in Lab #2 and later in the course when the filtering operation is considered.)