BIOMECHANICS
-Hand Prostheses

By: John Poidevin
Overview

- Hands
- History of Prostheses
- Current Developments
- Need and Requirements
- Foreseeable Future
- Questions
What are considered Hands

- Appendages connected to the forearm
- Identifiable by opposable thumbs
- Only found in mammalian order of primates
 - Humans
 - Apes and Monkeys
Importance of Hands

- Primary organ for physical interaction
- Dense collection of nerve endings
- Dominate area for pressure perception
- Controlled by opposite side of the brain
Make up of the Hand

• Bones
 – 8 Carpus
 – 5 Metacarpus
 – 14 Phalanges
 • Distal
 • Middle
 • Proximal
Make up of the Hand

• 27 Degrees Of Freedom (D.O.F)
 – 21 in fingers and thumb
 • 4 for fingers
 • 5 for thumb
 – 6 in wrist
Control nerves

- Extrinsic control nerves
 - Radial
 - Deep radial
 - Ulnar
 - Median
- Intrinsic control nerves
 - Median
 - Ulnar
Make up of the Hand

- Muscles
 - Extrinsic
 - Flexor
 - Superficial anterior (4)
 - Deep anterior (2)
 - Extensor
 - Superficial Posterior (5)
 - Deep Posterior (4)
 - Intrinsic
 - Thenar (4)
 - Hypothenar (3)
 - Intermediate (3)
History

- Originally made of leather and wood
- Roman General had an iron hand
- Hook “hands”
- German Knight Gotz Von Berlichingen - “Robin Hood”
Advancements in History

• 1500’s Ambroise Pare - “father of prosthetics”
 – Artificial joint
• Improved Medicine
 – Drugs and anesthesia
• Wars
 – Civil War
 – WWI
 – WWII
Current hand prosthetics

• Mechanical
 – Cineplasty
 – Body-powered
 • Advantages
 – Decent Feedback
 – Durable
 – Cheaper
 – Weight
 • Disadvantages
 – Uncomfortable
 – Restrictive
 – Appearance
Current hand prosthetics

• Electrical
 – Prosthetic Control by an EEG-based Brain-Computer Interface
 – Myoelectric prostheses
 • Advantages
 – Functionality
 – Appearance
 • Disadvantages
 – Price
 – Weight
 – Recharge
Prosthetic users preference

• Survey results
 – Increase of functionality
 • Hand grasps
 • D.O.F
 – Reduced weight
 – Better cosmetic appearance
 – Tactile feedback system
 • Sensory feedback
Common hand grasps

- Cylindrical Grasp
- Precision grasp
- Lateral grasp
Importance of touch
Hydraulic Hand Prostheses

- Flexible fingers
- Fluidic actuators
- Light weight frame
- Microvalves
- Micropump
- Reservoir

- Controller / Interface
Hydraulic Hand Prostheses

- **Low power**
 - Increased surface area
 - Oil fluidic actuators
- **Light weight**
 - External Gear pumps
 - Center of gravity
- **Moveable thumb**
 - 3 D.O.F
- **Multiple hand grip**
Hydraulic Hand Prostheses

- Most used Hand grasps
 - Cylindrical Grasp
 - Precision grasp
 - Lateral grasp
 - Hook grasp
 - Index position

- 6 microvalves
 - 6 D.O.F
Hydraulic Hand Prostheses

• Advantages
 – Increase in functionality
 – Reduced weight
 – Better cosmetic appearance

• Disadvantages
 – Control issues
 – Not for hard work
 – Leakage of hydraulic fluid
Mechanomyography

- Mechanomyography (MMG)
 - Low frequency sound (5-50 Hz) vibration produced by contracting muscles
 - Mimics 2-site electromyograph (EMG)
 - Non specific
 - Lacks skin impedance
 - Cheaper
Mechanomyography

- Soft Silicone Socket
 - Embedded array of sensors
- Hard Socket
 - Battery pack
- EMG Emulator board
 - Reduced cost
- Otto-Bock
Mechanomyography

- Trial run
 - Two participants
 - Three 30min visits
 - Soft Silicon
 - Hard socket
 - Training
 - Success
 - Relative to previous prosthetic
 - 88% and 71%
Mechanomyography

• Advantages
 – Emulated electromyograph
 – Potential of multiple control
 – Heightened sensitivity

• Disadvantages
 – Extrinsic frequencies perceived
 – Lack of response under force
 – Use of emulator
Direct Neural Feedback

- Need for referred sensations of touch and joint movement
 - Appropriate, discrete and graded
- Avoiding
 - whole never stimulation
 - Unrelated motion control
- Phantom hand
 - 80\% of amputees
Direct Neural Feedback

• Solution
 – Peripheral nerve stump interface
 – Platinum-iridium wire
 • Teflon insulate (30 cm long)
 – Planted in Medial nerve
 • Fascicle
 • 1mm stimulus zone
 – Amplified and listened to
 – Computer interface
 – Robotic hand control
Direct Neural Feedback

- Future testing
 - Tactile and proprioceptive
 - Strain gauge
 - Flexion/Extension
 - Grip control and elbow position
 - Match forces
 - Match angles
 - No visual assistance
- Next would be Closed Loop
Conclusion

• Hand Prosthetic
 – Come a long way
 – May new advancements
 • D.O.F.
 • Control
 • Feedback
 – Problems
 • Not a high need
 • Funding
Questions?

www.geocites.com/kwenndb/prostheticluke 09 April 2004
References

- Wikipedia, Hand”’10 October 2006, en.wikipedia.org/wiki/Hand
- Guger, Christoph, Harkam, Werner, Hertnaes, Carin, Pfurtscheller, Gert “Prosthetic Control by an EEG-based Brain-Computer Interface (BCI)” viewed 2006 www.gtec.at/research/Publications/aaate.pdf