Liver Support Systems

By:
Derek Cappon 0465328
Erika Schimek 0444900
Anatomy

- Located in the right hypochondriac region and part of the epigastric region of the abdominal cavity
- The heaviest gland in the body (~3 lbs on average)
- 2nd largest organ in the body (next to the skin)
- Divided into a right and left lobe by an extension of the peritoneum (falciform ligament)
• The liver is made up of groups of cells arranged into six-sided lobules
• A central vein (hepatic venules) runs through the middle of each lobule
• The vein branches into capillaries known as sinusoids
• Each sinusoid is bordered by hepatocytes (liver cells)
• Each lobule has small bile canaliculi (canals) which drain bile produced by hepatocytes to a bile duct
• The sinusoids also contain phagocytes known as Kupffer cells
• These cells destroy old red blood cells, white cells and foreign matter contained in blood traveling from the digestive tract

Red Arrows: Sinusoid
Blue Arrows: Hepatocytes
Black Arrow: Kupffer Cell
Yellow Arrow: Bile Canaliculi
• Oxygenated blood is received from the heart through the hepatic artery
• Deoxygenated blood full of nutrients and compounds absorbed from the digestive tract is received through the hepatic portal vein
• Branches of the hepatic artery, portal vein and bile ducts are usually grouped together into groups known as portal triads which run between lobules
Bile

- Breakdown of Hemoglobin in red blood cells produces Bilirubin
- The liver removes Bilirubin from the blood and uses it to produce bile
- Bile is an excretory product and is sent to the intestines
- The liver also uses bile to produce bile salts, which aid in the digestion of lipids

The molecular structure of Bilirubin:

[4]
Functions

• The liver performs many functions
 – Production of bile and bile salts
 – Carbohydrate metabolism
 – Protein metabolism
 – Drug and hormone metabolism
 – Lipid metabolism
Carbohydrate Metabolism

- Glycogen is a large, multi-branched polymer of glucose
- It is used to store large amounts of energy in one molecule
- When needed, glycogen is broken down to glucose to provide energy to cells in the body
- The liver produces glycogen for storage, and breaks it down when glucose is needed
Protein and Lipid Metabolism

- The liver synthesizes cholesterol, lipoproteins and most of the proteins for blood plasma.
- Serum albumin (albumin) is one of the most abundant plasma proteins.
- Albumin is a large, negatively charged protein.
- Albumin is vital for maintaining osmotic pressure, and transporting drugs and other lipophilic (non-polar) molecules around the bloodstream.
- Prothrombin is a required protein for clotting of the blood.
- Amino acids can be deaminated so they can be broken down by other cells for energy.

\[\text{NH}_3^+ \rightarrow \text{Urea} \quad (\text{enters bloodstream, eventually excreted}) \]

\[\text{R} \quad \text{H} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{O} \quad \text{H} \]

\[\text{R} \quad \text{H} \quad \text{C} \quad \text{C} \quad \text{OH} \]

\[\text{R} \quad \text{H} \quad \text{C} \quad \text{C} \quad \text{OH} \]

\[\text{R} \quad \text{H} \quad \text{C} \quad \text{C} \quad \text{OH} \]

\[\text{R} \quad \text{H} \quad \text{C} \quad \text{C} \quad \text{OH} \]
Drug/Toxin Metabolism

- Drug metabolism refers to either the modification/activation or degradation/deactivation of drugs in the body.
- The liver is the main site for metabolism of drugs.
- Degradation/deactivation is used to eliminate toxins and drugs which have ‘run their course’.
- Many drugs are non-polar, and therefore are not easily excreted.
- The liver deactivates many of these drugs and converts them into polar forms for excretion by the kidneys.
- Others are added to bile, and excreted through the intestines.
Drug catabolism is often broken down into 2 phases
Phase I usually involves a family of enzymes known as Cytochrome p450
The p450s catalyze reactions which convert drugs into more polar forms
One important characteristic of the p450 enzymes is the presence of a heme (Iron) centre, which is important in oxidation reactions
Phase I reactions often involve the addition of hydroxyl (-OH) groups or carbonyl (=O) groups through oxidation

A p450 enzyme (example)

The structure of the heme centre
• Phase II is also referred to as the conjugation phase
• In phase II, other molecules are added to the drug to make it even more polar
• There is a huge supply of highly polar Glucuronic acid in the liver
• This acid is added to drugs through a process known as Glucuronidation
• This process is one of the many different types that can occur during phase II drug metabolism
• Other groups that can be added to drugs during phase II are Sulfate and Glutathione

Glucuronic Acid

Glutathione
Alcohol Metabolism

- A specific example of drug metabolism
- 90% of alcohol consumed is metabolized by the liver
- The other 10% is removed by the kidneys and the lungs
- The following reaction pathway is followed:

\[
\text{Ethanol} + \text{NAD}^+ \xrightarrow{\text{Alcohol Dehydrogenase}} \text{Acetaldehyde} + \text{NADH}, \text{H}_2\text{O} \xrightarrow{\text{Aldehyde Dehydrogenase}} \text{Acetate Ion}
\]

- The acetate ion can then be converted to Acetyl CoA, which is used for production of ATP during the Kreb’s Citric Acid Cycle of cellular respiration
- This is a type of phase I reaction
Liver Regeneration

- The liver is able to rapidly regenerate itself!
- Upon receiving damage, a response to regenerate is triggered within the hepatocytes
- The signals which trigger, maintain and end regeneration are, as of yet, unknown
- Most regeneration occurs within 72 hours after damage has occurred
- The following graph shows the recovery of the liver after ~60% of the volume has been surgically removed
Common Afflictions of the Liver

- Hepatitis
- Cirrhosis
- Ascites
- Fatty Liver
- Liver Cancer
- Acute Liver Failure

[13]
Hepatitis – 1st Type:

“Inflammation of the liver”

Non-viral

Cause: ingestion of either

(a) toxic/drug-induced [ex. Poison mushrooms, arsenic, oral contraceptives, acetaminophen]

(b) alcohol – “Alcohol Liver Disease”

which are liver toxins (or “hepatotoxins”)

Why is it so bad?

- When the liver is inflamed, it cannot clear bile and poisonous substances, provide energy, or make proteins.
- Ascites
- Fatty Liver
- Cirrhosis
- Neurological dysfunction
- Fluid accumulation
- Blood clots
- Bleeding in the esophagus
Hepatitis – 2nd Type:

Viral

Hepatitis A

Transmission: orofecal route - unclean hygiene practices

Symptoms:

“flu-like” meaning
 - fever
 - appetite loss
 - nausea
 - abdominal pain
 - jaundice (yellowish colour on the skin and eyeballs)

- not too severe, there are vaccines available
- lasts generally 3-6 weeks
Hepatitis – 2nd Type:

Viral

Hepatitis B

Transmission: travels through pretty much all bodily fluids (ex. Blood, saliva)

What it does:
- more inflammation! More processes disrupted!
- like the influenza virus, it goes into the cells (in this case, liver cells) and gets its DNA replicated over and over and over…
- can become a carrier of the virus for life, infecting others
- cirrhosis
- liver cancer (chances increase 200x)
- It can live outside the body for up to 10 days!
- People die from this
- There is a vaccine, as well as medication for those that are infected
Hepatitis B
Hepatitis – 2nd Type:

Viral

Hepatitis C

Transmission: only blood transmission, ex. Tattooist needle

Duration: 6 months (acute phase)

indefinite (chronic phase)

Why is it so bad?

- no cure!!!!!
 -- therefore you are a carrier for life
 -- only treatment right now is chemotherapy

- chronic liver disease
- liver cancer
- no healing able to happen, eventually

need liver transplant
Hepatitis C
Cirrhosis

What it is: Severe scarring of the liver tissue

Why this is bad: As scar tissue increases, amount of functioning liver cells decrease and liver works less effectively. Liver can stop functioning. Cirrhosis can lead to end-stage liver disease.

Causes: some type of chronic liver damage/disease
- Males drinking in excess of 80 g and females in excess of 40 g of alcohol per day for 10 years are at a high risk of developing cirrhosis

Treatment: can’t get rid of the scarring, only stop the progression of more (ex. Stop drinking alcohol)
- liver transplant
Ascites

- Fluid builds up in between membranes lining the abdomen and abdominal organs
- Liver damage causes dysfunction and sends messages to the kidneys to retain sodium and water
- Portal vein tension keeps the excess fluid in the abdomen
- More common in cirrhosis from alcohol or alcohol hepatitis
- Diuretics combined with salt restrictions can get rid of it

[21]
Fatty Liver

What it is: accumulation of fat cells in the liver

Causes: obesity, diabetes, alcoholism, drugs, pregnancy, starvation, hepatitis

Symptoms: patients are often asymptotic!

What it does: fat can increase the amount of enzymes present in the liver, which can then cause inflammation and as we know, leads to scarring and cirrhosis

Treatment: depends on the main cause of each case of Fatty Liver

examples of possible treatment:
- exercise
- abstaining from alcohol
- dietary fat restriction
Liver Cancer

1. Heptoma:
 - Cancer of the hepatocytes
 - “Primary Liver Cancer”
 - Grows in the liver as a ball-like tumor, invading the normal tissue surrounding it

2. Cholangiocarcinoma
 - Cancer of the bile ducts
 - Often caused by infestation with the liver fluke Clonorchis (a parasite you can get from eating fish)
 - Grows along the bile ducts in sheets or lines & is hard to find on X-ray studies.

 [23]

 - Cirrhosis and chronic hepatitis are risk factors that may one day lead to cancer
 - Only treatment is normal cancer treatments such as chemotherapy/radiation therapy, or a liver transplant
Liver Failure

Generally,
- Uncommon
- High mortality
- Acute or Chronic types

What it is: The liver is so damaged and cannot function even close to normal, that encephalopathy (dementia, seizures, brain afflictions) due to fluid build up in the brain is observed.

Causes: anything that causes extensive damage to the liver, such as cirrhosis, hepatitis C

Treatment: not too much can be done at this point, trying to get rid of the underlying cause (if possible) might not really help. Liver transplant is needed.
Liver Transplants

- **Cadaveric:**
 - donor is someone with extensive & irreversible brain damage ("brain-dead")
 - Most common
 - Months – years on a waiting list
- **Living:**
 - portion of a liver is taken from someone who is alive, and this is implanted into the recipient
 - Donor between 18 and 60
 - Donor has the right lobe (accounting for 60% of liver mass) removed and implanted in recipient
 - Both donated and left behind livers reach full size in 6-8 weeks

Cons:
- 4000 donors a year, while 17000 people on waiting list
- For Living Liver Transplantations, there is a 19% chance of complications and up to a 1% chance of death for the donor
- Cost of liver transplant as well as the necessary medication, PRICEY!

Estimated First-Year Charge (1996): $314,600
Estimated Annual Follow-up Charge (1996): $21,900

Wouldn’t it just be easier if your own liver worked again???

Who is *not* given a liver:
- Active alcohol or substance abuse
- Cancers in locations other than just the liver weigh against a transplant.
- Advanced heart and lung disease: These conditions prevent a transplanted liver from surviving.
- Severe infection: Such infections are a threat to a successful procedure.
- Massive liver failure: This type of liver failure accompanied by associated brain injury from increased fluid in brain tissue rules against a liver transplant.
- HIV infection
Alternative to Liver Transplantation

• In some cases, devices called Liver Support Systems can be used as an alternative to liver transplantation
• These devices may be used to take strain off the liver and give it time to regenerate on its own (*bridging to regeneration*)
• In other cases, they may be used to keep a patient alive until a suitable donor can be found (*bridging to transplantation*)
• As well, to reduce effects of encephalopathy
• Liver support systems can be divided into two types: artificial and bioartificial devices
Artificial Liver Support Systems

- Artificial livers do not include any biological components (cells)
- They run with mechanical, chemical and electrical components
- Two of the artificial liver support systems available today are the MARS and Prometheus systems
- These devices can only remove toxic substances in the blood; they have no ability to take over for the other functions of the liver
Hemodialysis

- Hemodialysis is a process which is most commonly used to take over the functions of the kidneys
- Blood is taken out of the body, passed through the machine, and passed back into the body
- Blood passes through artificial capillaries surrounded by semi-permeable membranes inside a dialysis tube
- A mineral-rich dialysis fluid is also pumped through the tube
- Waste material in the blood diffuses through the membrane into the fluid
- Anticoagulants such as heparin are used to prevent clotting in the machine
- Often a fistula is made by tying an artery and a vein together to increase blood supply
The hemodialysis loop

A dialyzer, opened up to show capillaries

A dialyzer
Molecular Adsorbent Recirculation (MARS)

- Very similar to hemodialysis, but with 2 separate dialyzers
- Dialyzer 1 has blood flowing through capillaries, and albumin flowing through the tube
- Non-polar toxins pass through the membrane and are ‘picked up’ by the albumin
- Polar substances diffuse into the albumin solution due to electrochemical attractions
- Albumin passes through capillaries of a 2nd dialyzer containing sodium bicarbonate, which removes polar substances
- Albumin continues through active charcoal filters and anionic exchangers, which remove albumin-bound substances
Albumin solution contains both protein-bound polar and ‘free’ non-polar molecules.

Albumin contains protein bound non-polar molecules, and very few polar molecules.

Active charcoal filters and anionic exchangers

"Clean Albumin"
<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Sex</th>
<th>Pathology</th>
<th>Indication</th>
<th>Cr μmol/l</th>
<th>Bill μmol/l</th>
<th>HRS</th>
<th>HE</th>
<th>VB</th>
<th>Sepsis</th>
<th>Total number of MARS</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59</td>
<td>F</td>
<td>HBV cirrhosis</td>
<td>AoCLF</td>
<td>210</td>
<td>520</td>
<td>-</td>
<td>+</td>
<td></td>
<td>-</td>
<td>1</td>
<td>Died</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>M</td>
<td>HBV cirrhosis</td>
<td>AoCLF</td>
<td>480</td>
<td>890</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>2</td>
<td>Died</td>
</tr>
<tr>
<td>3</td>
<td>62</td>
<td>M</td>
<td>HCC</td>
<td>Posthepatectomy</td>
<td>256</td>
<td>676</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>2</td>
<td>Died</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>M</td>
<td>Acute HBV hepatitis</td>
<td>ALF</td>
<td>86</td>
<td>512</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>Alive</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>M</td>
<td>HBV cirrhosis</td>
<td>AoCLF</td>
<td>250</td>
<td>798</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>Died</td>
</tr>
<tr>
<td>6</td>
<td>51</td>
<td>M</td>
<td>Wilson's disease</td>
<td>AoCLF</td>
<td>186</td>
<td>1029</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>3</td>
<td>Died</td>
</tr>
<tr>
<td>7</td>
<td>59</td>
<td>M</td>
<td>HBV cirrhosis</td>
<td>AoCLF</td>
<td>513</td>
<td>707</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>Died</td>
</tr>
<tr>
<td>8</td>
<td>56</td>
<td>F</td>
<td>PBC</td>
<td>AoCLF</td>
<td>100</td>
<td>578</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>Died</td>
</tr>
<tr>
<td>9</td>
<td>52</td>
<td>F</td>
<td>Posttransplant</td>
<td>Graft dysfunction</td>
<td>112</td>
<td>1030</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>Transplant, died</td>
</tr>
<tr>
<td>10</td>
<td>47</td>
<td>M</td>
<td>HCC</td>
<td>Posthepatectomy</td>
<td>589</td>
<td>167</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>Died</td>
</tr>
<tr>
<td>11</td>
<td>68</td>
<td>M</td>
<td>HCC</td>
<td>Posthepatectomy</td>
<td>319</td>
<td>83</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>2</td>
<td>Died</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
<td>M</td>
<td>HBV cirrhosis</td>
<td>AoCLF</td>
<td>193</td>
<td>708</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>Transplant, alive</td>
</tr>
<tr>
<td>13</td>
<td>48</td>
<td>M</td>
<td>HBV cirrhosis</td>
<td>AoCLF</td>
<td>120</td>
<td>576</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>Transplant, died 12 months</td>
</tr>
<tr>
<td>14</td>
<td>47</td>
<td>M</td>
<td>Posttransplant</td>
<td>Graft dysfunction</td>
<td>56</td>
<td>956</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>Transplant, died 4 months</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>M</td>
<td>HBV cirrhosis</td>
<td>AoCLF</td>
<td>424</td>
<td>684</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>Died</td>
</tr>
<tr>
<td>16</td>
<td>34</td>
<td>M</td>
<td>Drug-induced ALF</td>
<td>ALF</td>
<td>75</td>
<td>811</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>Transplant, alive</td>
</tr>
<tr>
<td>17</td>
<td>57</td>
<td>M</td>
<td>Posttransplant</td>
<td>Graft dysfunction</td>
<td>594</td>
<td>702</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>6</td>
<td>Died</td>
</tr>
<tr>
<td>18</td>
<td>46</td>
<td>M</td>
<td>HBV cirrhosis</td>
<td>AoCLF</td>
<td>243</td>
<td>764</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>Died</td>
</tr>
<tr>
<td>19</td>
<td>55</td>
<td>M</td>
<td>HBV cirrhosis</td>
<td>AoCLF</td>
<td>190</td>
<td>652</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>3</td>
<td>Died</td>
</tr>
<tr>
<td>20</td>
<td>39</td>
<td>M</td>
<td>Posttransplant</td>
<td>Graft dysfunction</td>
<td>344</td>
<td>643</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>2</td>
<td>Died</td>
</tr>
<tr>
<td>21</td>
<td>66</td>
<td>M</td>
<td>Cholangiocarcinoma</td>
<td>Posthepatectomy</td>
<td>392</td>
<td>713</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>Died</td>
</tr>
<tr>
<td>22</td>
<td>54</td>
<td>M</td>
<td>HBV cirrhosis</td>
<td>AoCLF</td>
<td>464</td>
<td>355</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>Died</td>
</tr>
</tbody>
</table>

M, male; F, female; ALF, acute liver failure; AoCLF, acute on chronic liver failure; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; PBC, primary biliary cirrhosis; HRS, hepatorenal syndrome; HE, hepatic encephalopathy; VB, variceal bleed; Cr, creatinine level before treatment; Bill, total bilirubin level before treatment.
Prometheus

- Blood is first passed through a fractionated plasma separation and adsorption (FPSA) system
- This separates the albumin from the rest of the blood
- The albumin is passed through a secondary circuit containing two columns known as prometh 01 and 02
- 01 contains a neutral resin, and 02 contains an anion exchange resin adsorber
- These two substances adsorb the toxins out of the albumin, and the albumin is passed into the blood again
- After rejoining with the albumin, the blood passes through a conventional hemodialysis machine to remove polar toxins
Albumin, and protein-bound toxins

Blood + polar toxins

“Clean” Albumin

“Clean Blood”
Prometheus vs. MARS

• A study was performed on 18 patients in Belgium suffering from different forms of liver disease

• 9 were put on MARS and 9 on Prometheus

• Prometheus was found to have a better clearance rate for most toxins, especially protein-bound (non-polar) toxins
<table>
<thead>
<tr>
<th>Device</th>
<th>n°</th>
<th>Age</th>
<th>Sex</th>
<th>Liver disease</th>
<th>LTX-candidate</th>
<th>Indications</th>
<th>Number of sessions</th>
<th>Duration of treatment (day)</th>
<th>HE</th>
<th>Child-Pugh</th>
<th>UNOS</th>
<th>APACHE II</th>
<th>MELD</th>
<th>SOFA</th>
<th>3-month outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROM</td>
<td>1</td>
<td>38</td>
<td>M</td>
<td>ACLF: HCV</td>
<td>Yes</td>
<td>BTP</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>C11</td>
<td>2A</td>
<td>17</td>
<td>41</td>
<td>10</td>
<td>Alive</td>
</tr>
<tr>
<td>PROM</td>
<td>2</td>
<td>59</td>
<td>F</td>
<td>ACLF: alcohol</td>
<td>No</td>
<td>Support</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>C12</td>
<td>2B</td>
<td>21</td>
<td>26</td>
<td>7</td>
<td>Dead</td>
</tr>
<tr>
<td>PROM</td>
<td>3</td>
<td>64</td>
<td>F</td>
<td>ACLF: alcohol</td>
<td>Yes</td>
<td>Support</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>C11</td>
<td>2B</td>
<td>13</td>
<td>21</td>
<td>7</td>
<td>Dead</td>
</tr>
<tr>
<td>PROM</td>
<td>4</td>
<td>30</td>
<td>M</td>
<td>ACLF: alcohol</td>
<td>No</td>
<td>Support</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>C11</td>
<td>2A</td>
<td>12</td>
<td>28</td>
<td>8</td>
<td>Alive</td>
</tr>
<tr>
<td>PROM</td>
<td>5</td>
<td>63</td>
<td>F</td>
<td>ACLF: alcohol</td>
<td>No</td>
<td>Support</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>C13</td>
<td>2A</td>
<td>22</td>
<td>29</td>
<td>11</td>
<td>Dead</td>
</tr>
<tr>
<td>PROM</td>
<td>6</td>
<td>54</td>
<td>M</td>
<td>Failing-liver transplant, HCV</td>
<td>Yes</td>
<td>BTP</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>C12</td>
<td>2A</td>
<td>10</td>
<td>18</td>
<td>8</td>
<td>Alive</td>
</tr>
<tr>
<td>PROM</td>
<td>7</td>
<td>55</td>
<td>F</td>
<td>ACLF: alcohol</td>
<td>Yes</td>
<td>BTP</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>C12</td>
<td>2A</td>
<td>17</td>
<td>26</td>
<td>8</td>
<td>Alive</td>
</tr>
<tr>
<td>PROM</td>
<td>8</td>
<td>47</td>
<td>F</td>
<td>ACLF: alcohol</td>
<td>No</td>
<td>Support</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>C12</td>
<td>2B</td>
<td>8</td>
<td>29</td>
<td>7</td>
<td>Dead</td>
</tr>
<tr>
<td>PROM</td>
<td>9</td>
<td>53</td>
<td>F</td>
<td>ACLF: alcohol</td>
<td>No</td>
<td>Support</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>C13</td>
<td>2A</td>
<td>20</td>
<td>44</td>
<td>10</td>
<td>Dead</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>51.4</td>
<td></td>
<td></td>
<td>2.7</td>
<td>2.8</td>
<td>1.1</td>
<td>C11.8</td>
<td>15.6</td>
<td>29.1</td>
<td>8.4</td>
<td>Survival: 44%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>3.8</td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>1.7</td>
<td>2.8</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARS</td>
<td>10</td>
<td>68</td>
<td>M</td>
<td>Acute HBV</td>
<td>No</td>
<td>Support</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>NA</td>
<td>2B</td>
<td>28</td>
<td>NA</td>
<td>10</td>
<td>Dead</td>
</tr>
<tr>
<td>MARS</td>
<td>11</td>
<td>62</td>
<td>M</td>
<td>ACLF: alcohol</td>
<td>No</td>
<td>Support</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>13</td>
<td>2B</td>
<td>12</td>
<td>17</td>
<td>6</td>
<td>Alive</td>
</tr>
<tr>
<td>MARS</td>
<td>12</td>
<td>57</td>
<td>M</td>
<td>ACLF: alcohol</td>
<td>No</td>
<td>Support</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>13</td>
<td>2A</td>
<td>22</td>
<td>27</td>
<td>7</td>
<td>Dead</td>
</tr>
<tr>
<td>MARS</td>
<td>13</td>
<td>77</td>
<td>M</td>
<td>Chronic cholestatic toxic syndrome</td>
<td>No</td>
<td>Support</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>NA</td>
<td>2B</td>
<td>8</td>
<td>NA</td>
<td>6</td>
<td>Alive</td>
</tr>
<tr>
<td>MARS</td>
<td>14</td>
<td>69</td>
<td>M</td>
<td>Chronic cholestatic toxic syndrome</td>
<td>No</td>
<td>Support</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>NA</td>
<td>2B</td>
<td>8</td>
<td>NA</td>
<td>6</td>
<td>Alive</td>
</tr>
<tr>
<td>MARS</td>
<td>15</td>
<td>46</td>
<td>M</td>
<td>ACLF: alcohol</td>
<td>No</td>
<td>Support</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>2A</td>
<td>19</td>
<td>30</td>
<td>12</td>
<td>Alive</td>
</tr>
<tr>
<td>MARS</td>
<td>16</td>
<td>52</td>
<td>M</td>
<td>ACLF: alcohol</td>
<td>No</td>
<td>Support</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>14</td>
<td>2A</td>
<td>13</td>
<td>25</td>
<td>8</td>
<td>Dead</td>
</tr>
<tr>
<td>MARS</td>
<td>17</td>
<td>43</td>
<td>M</td>
<td>ACLF: HBV</td>
<td>No</td>
<td>Support</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>2A</td>
<td>22</td>
<td>30</td>
<td>9</td>
<td>Dead</td>
</tr>
<tr>
<td>MARS</td>
<td>18</td>
<td>55</td>
<td>M</td>
<td>Primary graft dysfunction</td>
<td>No</td>
<td>Support</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>2A</td>
<td>22</td>
<td>27</td>
<td>11</td>
<td>Alive</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>58.7</td>
<td></td>
<td></td>
<td>3.1</td>
<td>3.1</td>
<td>1.4</td>
<td>C11.5</td>
<td>17.1</td>
<td>26</td>
<td>8.3</td>
<td>Survival: 56%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>3.7</td>
<td></td>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>1.1</td>
<td>2.4</td>
<td>2</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BTP, bridge to transplantation; HE, hepatic encephalopathy; M, male; F, female; NA, not applicable.
HCV, hepatitis C virus.
HBV, hepatitis B virus.
TABLE 2. Biochemical data at pretreatment and posttreatment

<table>
<thead>
<tr>
<th></th>
<th>Pretreatment</th>
<th>Posttreatment</th>
<th>RRt</th>
<th>Pretreatment</th>
<th>Posttreatment</th>
<th>RRt</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>10.2 ± 0.4 (9)</td>
<td>8.8 ± 0.3 (9)<sup>†</sup></td>
<td>NA</td>
<td>8.3 ± 0.4 (9)<sup>†</sup></td>
<td>7.9 ± 0.4 (8)</td>
<td>NA</td>
</tr>
<tr>
<td>Platelets (thousands/μL)</td>
<td>132.3 ± 24.9 (9)</td>
<td>116.4 ± 24.7 (9)</td>
<td>NA</td>
<td>92.4 ± 18.8 (9)</td>
<td>64.0 ± 13.6 (8)</td>
<td>NA</td>
</tr>
<tr>
<td>Leukocytes (thousands/μL)</td>
<td>11.8 ± 1.3 (9)</td>
<td>13.6 ± 2.6 (9)</td>
<td>NA</td>
<td>13.6 ± 2.6 (9)</td>
<td>11.7 ± 2.6 (8)</td>
<td>NA</td>
</tr>
<tr>
<td>Prothrombin time (%)</td>
<td>36.5 ± 4.7 (6)</td>
<td>48.3 ± 5.4 (6)</td>
<td>NA</td>
<td>36.1 ± 3.8 (9)</td>
<td>26.8 ± 4.3 (9)<sup>*</sup></td>
<td>NA</td>
</tr>
<tr>
<td>Serum albumin (g/L)</td>
<td>31.3 ± 1.4 (9)</td>
<td>29.8 ± 1.4 (7)</td>
<td>NA</td>
<td>31.0 ± 1.4 (9)</td>
<td>27.6 ± 2.3 (7)</td>
<td>NA</td>
</tr>
<tr>
<td>ALAT (U/L)</td>
<td>214 ± 140 (8)</td>
<td>131 ± 75 (7)<sup>*</sup></td>
<td>NA</td>
<td>106 ± 48 (9)</td>
<td>42 ± 9 (8)<sup>†</sup></td>
<td>NA</td>
</tr>
<tr>
<td>Lactate dehydrogenase (U/L)</td>
<td>489 ± 75 (8)</td>
<td>615 ± 142 (7)</td>
<td>NA</td>
<td>695 ± 163 (7)</td>
<td>426 ± 37 (6)</td>
<td>NA</td>
</tr>
<tr>
<td>Total bilirubin (mg/dL)</td>
<td>24.9 ± 4.2 (9)</td>
<td>18.4 ± 2.3 (9)<sup>*</sup></td>
<td>15.7 ± 10.7 (9)</td>
<td>33.3 ± 3.9 (9)</td>
<td>16.8 ± 1.3 (9)<sup>†</sup></td>
<td>48.2 ± 5.0 (9)</td>
</tr>
<tr>
<td>Conjugated bilirubin (mg/dL)</td>
<td>17.6 ± 3.2 (9)</td>
<td>12.8 ± 2.1 (6)<sup>*</sup></td>
<td>25.0 ± 6.0 (6)</td>
<td>25.4 ± 3.1 (9)</td>
<td>12.3 ± 1.3 (9)<sup>†</sup></td>
<td>52.5 ± 4.3 (9)</td>
</tr>
<tr>
<td>Bile acids (μmol/L)</td>
<td>149.9 ± 21.8 (9)</td>
<td>61.8 ± 9.6 (5)<sup>*</sup></td>
<td>65.7 ± 3.0 (5)</td>
<td>145.8 ± 32.9 (9)</td>
<td>29.0 ± 2.6 (6)<sup>*</sup></td>
<td>69.7 ± 5.3 (6)</td>
</tr>
<tr>
<td>Serum urea nitrogen (mg/dL)</td>
<td>96.7 ± 26.7 (9)</td>
<td>48.4 ± 11.3 (9)<sup>†</sup></td>
<td>40.3 ± 8.3 (9)</td>
<td>108.3 ± 23.3 (9)</td>
<td>47.9 ± 15.3 (9)<sup>†</sup></td>
<td>58.3 ± 7.6 (9)</td>
</tr>
<tr>
<td>Serum creatinine (mg/dL)</td>
<td>2.03 ± 0.3 (9)</td>
<td>1.60 ± 0.20 (9)<sup>†</sup></td>
<td>15.8 ± 6.2 (9)</td>
<td>2.50 ± 0.64 (9)</td>
<td>1.40 ± 0.30 (9)<sup>*</sup></td>
<td>39.1 ± 7.9 (9)</td>
</tr>
</tbody>
</table>

*P < 0.05; [†]P < 0.01 pre versus post; [‡]P < 0.05; [§]P < 0.01 PROM versus MARS.

[*]Number of data sets between brackets.

RRt, treatment phase reduction ratio; NA, not applicable.

ALAT, alanine aminotransferase.

Toxin levels
Bioartificial Livers (BALs)

- Still in clinical trials
- Extracorporeal
- Human hepatocytes get harvested from donor livers that were discarded because of steatosis, cirrhosis, fibrosis, or mechanical injury.
- Also use animal hepatocytes (mostly pig)
 - When using the animal hepatocytes, the designs include covering the cells with a collagen layer, and then a porous outer layer. This ensures that the blood never comes in contact with the pig hepatocytes, since they will start attacking them when this happens
Bioartificial Livers

HepatAssist
- Utilizes pig hepatocytes
- Can be used for 6-8 hours a day

Basic Design:
- Venous connection leads the plasma to the HepatAssist
- Cellular component of the plasma gets separated into by a “plasmapheresis” device
- Plasma goes into a hollow microfibre, which is surrounded by a micro porous membrane
 → Membrane pores are large enough for toxin molecules to pass through, but too small for the
 hepatocytes
 → Micro porous membrane pig hepatocytes
- The two are reunited and undergo heating and oxygenation together, and return to the body

Clinical Study:
• During one study of 171 patients (86 control and 85 bioartificial liver (BAL)), majority with hepatic
 failure but some with acute liver failure
• Survival for the entire patient population at 30 days was 71% for the BAL group versus 62% for
 the control group

Despite these results, the HepatAssist was not given FDA approval and is not on the market
Bioartificial Livers

Extracorporeal Liver Assist Device (ELAD)
- Outside of the body, these devices use liver cells to filter the blood that usually goes to your liver
- Liver cells are from a human liver
- To be used continuously for up to 10 days, then change the cartridges
- Also used for rehabilitation after receiving a liver transplant

Basic Design:
- Venous connection to the ELAD
- 2 chambers that have cartridges of liver cells
- Liver cells filter out the toxins via *dialysis*
 - Passes blood along one side of a semipermeable membrane, having some dialysis fluid and hepatocytes on the other side.
 - The toxins (ex. Urea) undergo diffusion and leave the blood for the fluid on the other side, and nutrients that the liver normally supplies diffuse into the blood
- Chamber then remixes the blood
- Blood is returned to the body
Modular Extracorporeal Liver Support (MELS)

- Integrated oxygenation
- Treatment up to 3 days
- Based on the “Cell Module”, a unit consisting of 3 interwoven capillary bundles in a polyurethane housing.
 - One of the bundles serves as decentralized oxygenation;
 - 2 bundles are used for perfusion with patient plasma. It is operated with primary porcine hepatocytes as well as human hepatocytes isolated from discarded donor organs.
- The modular design is based on a **parallel plate geometry**.
 - Rectangular cross-section flow channel formed by two polycarbonate plates.
 - The lower plate supports a semi-permeable membrane to which the liver cells are attached.
 - A parallel array of gas permeable hollow fibres are mounted on the upper plate.
 - Blood plasma from the patient flows along the channel and is therefore in direct contact with the liver cells.

[25]
Modular Extracorporeal Liver Support

- Cell Module
- Detox Module
- Dialysis Module
- Plasma Filter
- High Flux Dialysis Filter
- Dialysis Fluid
- HA Solution
- Waste
Future

• Stem cells [ex. embryonic, adult liver progenitors] are being considered for liver treatment
• Also, tissue engineering an actual liver with hepatocytes
• Stem cells would allow livers to be grown in a lab and transplanted into patients
 – **PROBLEM**: The liver has too many functions to be replaced with a machine
Image References

7. http://metallo.scripps.edu/PROMISE/haemb_x.gif
8. See reference #8 (next page)
12. See reference #7 (next page)
Works Cited

1. What is Hepatitis?
 http://digestive-disorders.health-cares.net/hepatitis.php
 Ask Pat. Hartshort Health Service
 http://www.askpat.colostate.edu/viewht.cfm?qid=16&cat=4&

2. Wikipedia
 http://en.wikipedia.org/wiki/Fatty_liver
 http://www.healthscout.com/ency/1/578/main.html

3. Fatty Liver. Alan Hood
 http://www.thehumanliver.info/fatty_liver_disease.html?gclid=CJfgy5Psq4gCFQ9OWAod2Hzqig

5. Ascites. F. Wong & L. Blendis
 http://www.gastroresource.com/GITextbook/En/Chapter14/14-12.htm

6. Liver Cancer. Mama’s Health

 http://en.wikipedia.org/wiki/Acute_liver_failure

8. Liver transplantation. University of Kentucky
 http://www.mc.uky.edu/transplant/liver.htm

 http://www.cpmc.org/advanced/liver/patients/topics/finance.html

10. Liver Transplant. eMedicineHealth
 http://www.emedicinehealth.com/liver_transplant/article_em.htm

11. Artificial Liver. About.Com
 http://biology.about.com/library/weekly/aa040899.htm

13. The Bioartificial Liver. Brown University:
2. Rozga, Jacek (2006)
Liver support technology – an update.
Xenotransplantation 13 (5), 380-389.
doi: 10.1111/j.1399-3089.2006.00323.x
Molecular adsorbent recirculating system treatment for patients with liver failure: the Hong Kong experience.
Liver International 26 (6), 695-702.
doi: 10.1111/j.1478-3231.2006.01293.x
Molecular Adsorbent Recirculating System (MARS)
Annals, Academy of Medicine, Singapore 33, 329-335
Bioartificial Liver: Current Status
Transplantation Proceedings 37 (9), 3893-3895
Emerging Indications for Albumin Dialysis.
The American Journal of Gastroenterology 100 (2), 468-475.

8. AU: M. Nagino, M. Ando, J. Kamiya, K. Uesaka, T. Sano, Y. Nimura
TI: Liver regeneration after major hepatectomy for biliary cancer
SO: British Journal of Surgery
VL: 88
NO: 8
PG: 1084-1091
YR: 2001
CP: © 2001 British Journal of Surgery Society Ltd
ON: 1365-2168
PN: 0007-1323
AD: First Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
DOI: 10.1046/j.0007-1323.2001.01832.x
US: http://dx.doi.org/10.1046/j.0007-1323.2001.01832.x

9. University of Texas at Austin, Course webpage for PHR 143M/P : Basic Medicinal Chemistry, Dr. Patrick J. Davis, Course Coordinator, http://www.utexas.edu/pharmacy/courses/phr452d/