EE 4CL4 – Control System Design

Homework Assignment #10

- 1. The output y(t) of a continuous-time system having a unit step input u(t) is sampled every 1 second. The expression for the sampled sequence $\{y[k]\}$ is given by:
 - $y[k] = 0.5 0.5(0.6)^k$ $\forall k \ge 0$.
 - a. Determine $Y_q(z)$.
 - b. Determine the transfer function from $U_q(z)$ to $Y_q(z)$.
 - c. From the above result, derive the difference equation linking $\{y[k]\}$ to $\{u[k]\}$. (25 pts)
- 2. The transfer function of a sampled-data system (in delta form) is given by:

$$G_{\delta}(\gamma) = \frac{\gamma + 0.5}{(\gamma + 0.1)(\gamma + 0.8)}$$

- a. If $\Delta = 3.5$ s, is the system stable?
- b. Find the corresponding Z-transform function for $\Delta = 3.5$ s.
- c. Repeat parts a and b for $\Delta = 1.5$ s. (25 pts)
- 3. A continuous-time plant has a transfer function given by:

$$G_o(s) = \frac{1}{(s+1)^2(s+2)}$$

- a. Compute the location of the sampling zeros for $\Delta = 0.2$ s.
- b. How do the sampling zeros evolve when we vary Δ over the range [0.02 s, 2 s]? (25 pts)
- 4. A continuous-time plant has a transfer function given by:

$$G_o(s) = \frac{-s+1}{(s+2)(s+1)}$$

- a. Is there any sampling frequency at which no zero appears in the Z-domain transfer function (assuming a ZOH at the plant input)?
- b. Synthesize a minimal-prototype controller for $\Delta = 0.5$ s.
- c. Evaluate the control-loop performance to a unit step-output disturbance. (25 pts)