EE 4CL4 - Control System Design

Solutions to Homework Assignment \#1

1. Explain how a high-gain feedback loop can be used to produce an implicit inverse of the plant model.
(20 pts)

Figure 2.7:
Realisation of
conceptual controller

From Fig. 2.7 of Goodwin et al., $u=h\langle r-z\rangle=h\langle r-f\langle u\rangle\rangle$. Passing each side of this equation through the function $h^{-1}\langle 0\rangle$ gives $h^{-1}\langle u\rangle=r-f\langle u\rangle$ or $f\langle u\rangle=r-h^{-1}\langle u\rangle$. Passing each side of this last equation through the function $f^{-1}\langle 0\rangle$ then gives $u=f^{-1}\left\langle r-h^{-1}\langle u\rangle\right\rangle$. If $h^{-1}\langle u\rangle \ll r$, then $u \approx f^{-1}\langle r\rangle$. That is, the feedback loop produces an approximate inverse of $f\langle 0\rangle$ under the condition that $h^{-1}\langle 0\rangle$ is small, i.e., the gain of $h\langle 0\rangle$ is high.
2. List under what conditions might an open-loop controller be acceptable? Describe the advantages of using an open-loop controller as compared to a closed-loop controller such a case?

An open-loop controller may be sufficient if:
a. a very accurate model of the plant is known,
b. the model and its inverse are stable, and
c. disturbances and initial conditions are negligible.

The advantages of an open-loop controller are:
d. no sensors required,
e. the controller may be reducible to a very simple system (e.g., an IIR filter), and
f. no transmission of sensor information required, and consequently a possible source of signal delay is removed.
3. Explain why a closed-loop controller is preferable to an open-loop controller for most control problems?
(20 pts)
Closed-loop controllers are more forgiving in the presence of modelling errors, system instabilities, unknown initial conditions and disturbances to any signal in the system, because the actual output of the plant is being taken into account when producing the control signal.

4. A nonlinear system has an input-output model given by:

$$
\frac{\mathrm{d} y(t)}{\mathrm{d} t}+(1+0.2 y(t)) y(t)=u(t)+0.2 u(t)^{3}
$$

a. Compute the operating points, i.e., values of \boldsymbol{y} for a particular value of \boldsymbol{u}, for $\boldsymbol{u}_{\boldsymbol{Q}}=\mathbf{2}$. (assume they are equilibrium points, i.e., $\frac{\mathrm{d} y(t)}{\mathrm{d} t}=0$)
b. Obtain a linearized model for each of the operating points above.
a. If $\frac{\mathrm{d} y(t)}{\mathrm{d} t}=0$ and $u_{Q}=2$, then $0.2 y_{Q}{ }^{2}+y_{Q}=u_{Q}+0.2 u_{Q}{ }^{3} \Rightarrow 0.2 y_{Q}{ }^{2}+y_{Q}-3.6=0$ and consequently $y_{Q}=-7.4244$ or 2.4244 .
b. The system can be linearized by using the first-order Taylor series to approximate the model, such that:

$$
\left.\frac{\mathrm{d} \Delta y(t)}{\mathrm{d} t} \approx \frac{\partial f}{\partial y}\right|_{\substack{y=y_{Q} \\ u=u_{Q}}} \Delta y(t)+\left.\frac{\partial f}{\partial u}\right|_{\substack{y=y_{0} \\ u=u_{Q}}} \Delta u(t),
$$

where $\Delta y(t)=y(t)-y_{Q}$ and $\Delta u(t)=u(t)-u_{Q}$.
Solving this equation for the nonlinear model gives the linear equation:

$$
\frac{\mathrm{d} \Delta y(t)}{\mathrm{d} t}+\left(1+0.4 y_{Q}\right) \Delta y(t)=\left(1+0.6 u_{Q}^{2}\right) \Delta u(t)
$$

For the two equilibrium points $\left(u_{Q}, y_{Q}\right)=(2,-7.4244)$ and $(2,2.4244)$ obtained in part a. above, the system can be modelled, respectively, as:

$$
\begin{aligned}
& \frac{\mathrm{d} \Delta y(t)}{\mathrm{d} t}-1.9698 \Delta y(t)=3.4 \Delta u(t), \text { and } \\
& \frac{\mathrm{d} \Delta y(t)}{\mathrm{d} t}+1.9698 \Delta y(t)=3.4 \Delta u(t)
\end{aligned}
$$

