EE 4CL4 – Control System Design

Homework Assignment #2

1. Consider an electronic amplifier with input voltage $v_i(t)$ and output voltage $v_o(t)$. Assume that:

$$v_o(t) = 8v_i(t) + 2.$$
 (1)

- a. Show that the amplifier does not strictly satisfy the principle of superposition. Thus, this system is not strictly linear. (A better term for this system would be affine.)
- b. Note that the system can also be written as follows:

$$v_o(t) = 8v_i(t) + 2d_i(t),$$
 (2)

where $d_i(t)$ is a constant offset (equal to 1). Show that the principle of superposition does hold for the input vector $[v_i(t) \ d_i(t)]^T$.

- c. Obtain an incremental model for $\Delta v_o(t) = v_o(t) v_{oQ}$, $\Delta v_i(t) = v_i(t) v_{iQ}$, where (v_{iQ}, v_{oQ}) is any point satisfying the model given by Eq. (1) above. Show that this incremental model is the same for all choices of the pair (v_{iQ}, v_{oQ}) . (25 pts)
- 2. Consider the following nonlinear state space model:

$$\dot{x}_1(t) = -2x_1(t) + 0.1x_1(t)x_2(t) + u(t), \tag{3}$$

$$\dot{x}_2(t) = -x_1(t) - 2x_2(t)(x_1(t))^2, \tag{4}$$

$$y(t) = x_1(t) + (1 + x_2(t))^2.$$
(5)

Build a linearized model around the operating point given by $u_Q = 1$. (25 pts)

3. A system transfer function is given by:

$$H(s) = \frac{-s+1}{(s+1)^2}.$$
 (6)

Compute the time instant, t_u , at which the step response exhibits maximum undershoot. (25 pts)

4. The unit step response of a system with zero initial conditions is given by:

$$y(t) = 3 - 2e^{-2t} - e^{-3t} \quad \forall t \ge 0.$$
(7)

- a. Compute the system transfer function.
- b. Compute the system response to a unit impulse. (25 pts)