
EE 4CL4 – Control System Design 

Solutions to Homework Assignment #2 

1. Consider an electronic amplifier with input voltage vi(t) and output voltage vo(t). Assume that: 

( ) ( ) 28 += tvtv io . (1) 

a. Show that the amplifier does not strictly satisfy the principle of superposition. Thus, this 
system is not strictly linear. (A better term for this system would be affine.) 

b. Note that the system can also be written as follows: 

( ) ( ) ( )tdtvtv iio 28 += , (2) 

where di(t) is a constant offset (equal to 1). 
Show that the principle of superposition does hold for the input vector [vi(t)  di(t)]T. 

c. Obtain an incremental model for ∆vo(t) = vo(t) − voQ, ∆vi(t) = vi(t) − viQ, where (viQ, voQ) is 
any point satisfying the model given by Eq. (1) above. Show that this incremental model is 
the same for all choices of the pair (viQ, voQ). (25 pts) 

a. First consider two different (independent) inputs vi1(t) and vi2(t). The corresponding outputs 
would then be vo1(t) = 8vi1(t)+2 and vo2(t) = 8vi2(t)+2.  To test superposition we consider now 
one input given by vi(t) = vi1(t)+ vi2(t).  Equation (1) implies that the output is given by: 

 vo(t) = 8(vi1(t) + vi2(t)) + 2 = 8 vi1(t) + 8 vi2(t) + 2. (1′) 

However, superposition implies that vo(t) should be equal to vo1(t)+vo2(t), i.e. equal to 8 vi1(t) + 
8 vi2(t) + 4. This is different to the result given in Eq. (1′).  Hence the property of superposition 
does not hold for this system. 

b. The system model can be written as vo(t) = α (u(t))T : α = [8 2]; u(t) = [vi(t) di(t)].  If we 
consider now two vector inputs u1(t) and u2(t), it is straightforward to check that the system 
response to the input u1(t)+u2(t) according to Eq. (2) can also be obtained by adding up the 
output to u1(t) and the output to u2(t).  Thus superposition holds. 

c. If (viQ, voQ) describes an operating point, then (viQ, voQ) satisfies Eq. (1), i.e. voQ = 8viQ + 2.  
Subtracting this from Eq. (1) we have that vo(t) − voQ = ∆vo(t) = 8(vi(t) − viQ) = 8∆vi(t).  Thus, 
the incremental model is linear and it does not depend on the operating point. 

2. Consider the following nonlinear state space model: 

( ) ( ) ( ) ( ) ( )tutxtxtxtx ++−= 2111 1.02& , (3) 

( ) ( ) ( ) ( )( 2
1212 2 txtxtxtx −−=& )

)

, (4) 

( ) ( ) ( )( 2
21 1 txtxty ++= . (5) 

Build a linearized model around the operating point given by uQ = 1. (25 pts) 
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To linearize a state space model with one input variable u(t), two state variables x1(t) and x2(t) and 
one output variable y(t), i.e.,: 
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around an operating point (uQ, x1Q, x2Q, yQ), we define four new variables ∆u(t) = u(t) − uQ, ∆x1(t) = 
x1(t) − x1Q, ∆x2(t) = x2(t) − x2Q, and ∆y(t) = y(t) − yQ, and use the following approximations: 
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The linearized model for a (general) operating point is given by: 

d∆x1(t)/dt = −2∆x1(t) + 0.1x1Q∆x2(t) + 0.1x2Q∆x1(t) + ∆u(t) (3′) 

d∆x2(t)/dt = (−1 − 4x1Qx2Q)∆x1(t) − 2 (x1Q)2 ∆x2(t) (4′) 

∆y(t) = ∆x1(t) + 2(1 + x2Q)∆x2(t) (5′) 

To obtain the linearized model for uQ = 1, we compute the operating point from the system state 
space model (Eqs. (3)–(5)): 

0 = −2x1Q + 0.1x1Qx2Q + uQ (3′′) 

0 = − x1Q + −2x2Q (x1Q)2 (4′′) 

yQ = x1Q + (1 + x2Q)2 (5′′) 

We see that although x1Q = 0 satisfies Eq. (4′′), it does not satisfy Eq. (3′′) (for uQ = 1). Thus the 
alternative solution from (4′′) requires that x1Qx2Q = −0.5.  Using this value in (3′′) we obtain x1Q = 
0.475 and x2Q = −1.053.  Entering these values into Eqs. (3′)–(5′) gives: 

d∆x1(t)/dt = −2.1053∆x1(t) + 0.0475∆x2(t) + ∆u(t) (3′′′) 

d∆x2(t)/dt = ∆x1(t) − 0.4512∆x2(t) (4′′′) 

∆y(t) = ∆x1(t) − 0.1053∆x2(t) (5′′′) 
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3. A system transfer function is given by: 

( )
( )21
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ssH . (6) 

Compute the time instant, tu, at which the step response exhibits maximum undershoot. (25 
pts) 

We observe that, when maximum undershoot occurs, the time derivative of the step response must 
vanish. Thus, we consider, h(t), the impulse response instead (which is the derivative of the step 
response). 
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We observe that only two positive real values for t make this signal vanish, t = 0.5 and t = ∞. 
Obviously the maximum undershoot occurs at tu = 0.5 [s]. 

Alternatively, we can recall that if H(s) is the system transfer function, then the Laplace 
transformation of its unit step response y(t) is Y(s) = H(s)/s.  y(t) can be obtained by taking the 
inverse Laplace transform of Y(s).  h(t) can then be computed as the time derivative of y(t)µ(t) and 
the value for tu found as above. 

4. The unit step response of a system with zero initial conditions is given by: 

( ) 0ee23 32 ≥∀−−= −− tty tt . (7) 

a. Compute the system transfer function. 

b. Compute the system response to a unit impulse. (25 pts) 

We first recall that if H(s) is the system transfer function, then the Laplace transformation of its 
unit step response is Y(s) = H(s)/s. 

a. From the expression for y(t) in Eq. (7) we have that ( ) ( )( )32
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b. The system unit impulse response (with zero initial conditions), h(t), is equal to the inverse 
Laplace transform of the system transfer function, i.e., 
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Alternatively, h(t) can be computed as the time derivative of y(t)µ(t).  The answer to part a. can 
then be obtained by taking the Laplace transform of h(t). 
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