EE 4CL4 - Control System Design

Solutions to Homework Assignment \#3

1. A discrete-time system with input $u[k]$ and output $y[k]$ is described by the difference equation:

$$
y[k]-0.8 y[k-1]+0.15 y[k-2]=0.2 u[k-i] .
$$

a. Build a state space model for $\boldsymbol{i}=\mathbf{0}$.
b. Repeat for $\boldsymbol{i}=\mathbf{1}$.
a. For $i=0$ we can choose $x_{1}[k]=y[k-2]$ and $x_{2}[k]=y[k-1]$, thus the state space model is:

$$
\begin{aligned}
& x_{1}[k+1]=x_{2}[k] \\
& x_{2}[k+1]=-0.15 x_{1}[k]+0.8 x_{2}[\mathrm{k}]+0.2 u[k] \\
& y[k]=-0.15 x_{1}[k]+0.8 x_{2}[k]+0.2 u[k]
\end{aligned}
$$

b. When $i=1$ we have to add a new state variable, since the system output depends on a delayed input. We thus choose $x_{3}[k]=u[k-1]$ and the state space model becomes:

$$
\begin{aligned}
& x_{1}[k+1]=x_{2}[k] \\
& x_{2}[k+1]=-0.15 x_{1}[k]+0.8 x_{2}[\mathrm{k}]+0.2 x_{3}[k] \\
& x_{3}[k+1]=u[k] \\
& y[k]=-0.15 x_{1}[k]+0.8 x_{2}[k]+0.2 x_{3}[k]
\end{aligned}
$$

2. Consider a feedback control loop of a plant with nominal model $G_{o}(s)=\frac{1}{(s+1)}$. Assume that the controller $C(s)$ is such that the complementary sensitivity is:

$$
T_{o}(s)=\frac{4}{(s+2)^{2}}
$$

a. Show that the control loop is internally stable.
b. Compute the controller transfer function $C(s)$.
c. If the reference $r(t)$ is a unit step, compute the plant input $u(t)$.
a. The loop is internally stable since $T_{o}(s)$ is stable and the plant model is also stable and minimum phase (hence no unstable pole-zero cancellation can arise).

Alternatively, $C(\mathrm{~s})$ can be calculated for part b . and the characteristic polynomial shown to have no roots with positive real parts.
b. Given $T_{o}(s)$ and $G_{o}(s)$ we can obtain $C(s)$ from:

$$
C(s)=\left(G_{o}(s)\right)^{-1} \frac{T_{o}(s)}{S_{o}(s)}=\left(G_{o}(s)\right)^{-1} \frac{T_{o}(s)}{1-T_{o}(s)}=\frac{4(s+1)}{s(s+4)} .
$$

c. The plant input $u(t)$ can be computed from:

$$
\begin{aligned}
& U(s)=S_{u o}(s) R(s)=\frac{T_{o}(s)}{G_{o}(s)} R(s)=\frac{4(s+1)}{s(s+2)^{2}}=\frac{1}{s}-\frac{1}{s+2}+\frac{2}{(s+2)^{2}} \\
& \Rightarrow u(t)=\mathcal{L}^{-1}[U(s)]=1-\mathrm{e}^{-2 t}+2 t \mathrm{e}^{-2 t} .
\end{aligned}
$$

3. In a nominal control loop, the sensitivity is given by:

$$
S_{o}(s)=\frac{s(s+4.2)}{s^{2}+4.2 s+9}
$$

Assume that the reference $r(t)$ is a unit step and that the output disturbance is given by $d_{o}(t)=0.5 \sin (0.2 t)$.

Find an expression for the plant output $y(t)$ in the steady state.

We have that the output is given by:

$$
Y(s)=T_{o}(s) R(s)+S_{o}(s) D_{o}(s) .
$$

In steady state there will be two components in $y(t)$. One, y_{0}, is forced by the constant reference, and is given by $y_{0}=\lim _{t \rightarrow \infty} y(t)=\lim _{s \rightarrow 0} s Y(s)=T_{o}(0) \times 1=\left(1-S_{o}(0)\right) \times 1=1$. The second component, $y_{s}(t)$, is forced by the disturbance sine-wave, and in steady state, this component can be computed using phasor analysis, i.e, by filtering the sine-wave (of frequency $\omega=0.2$) by the frequency response of $S_{o}(s)$ at $s=\mathrm{j} \omega=\mathrm{j} 0.2$. This yields:

$$
y_{s}(t)=\left|S_{o}(\mathrm{j} 0.2)\right| \times 0.5 \sin \left(0.2 t+\angle S_{o}(\mathrm{j} 0.2)\right)=0.0467 \sin (0.2 t+1.5249) .
$$

Thus, the steady state plant output is given by $y(t)=y_{0}+y_{s}(t)=1+0.0467 \sin (0.2 \mathrm{t}+1.5249)$.
4. Consider the following sets of plants and controllers with nominal models $G_{o}(s)$ and controllers $C(s)$. Assuming a one-degree-of-freedom unity control loop, use Routh's criterion to find the conditions for each of the controller's parameters under which the nominal feedback loop is stable.
a. Nominal plant $G_{o}(s)=\frac{1}{(s+1)^{4}}$, with controller $\boldsymbol{C}(s)=\boldsymbol{K}$.
b. Nominal plant $G_{o}(s)=\frac{1}{(s+1)(s+2)}$, with controller $C(s)=\frac{a s+b}{s}$.
a. For this plant and controller, the characteristic polynomial $p(s)=A_{o}(s) L(s)+B_{o}(s) P(s)=(s+1)^{4}$ $+K=s^{4}+4 s^{3}+6 s^{2}+4 s+(1+K)=0$, and consequently Routh's array is:

$$
\begin{array}{llll}
s^{4} & 1 & 6 & 1+K \\
s^{3} & 4 & 4 & \\
s^{2} & 5 & 1+K & \\
s^{1} & \frac{16-4 K}{5} & & \\
s^{0} & 1+K &
\end{array}
$$

For closed-loop stability, Routh's criterion states that there must be no changes of sign in the first column of the array. Consequently, $\frac{16-4 K}{5}>0$ and $K+1>0 \Rightarrow-1<K<4$.
b. For this plant and controller, the characteristic polynomial $p(s)=A_{o}(s) L(s)+B_{o}(s) P(s)=$ $s(s+1)(s+2)+a s+b=s^{3}+3 s^{2}+(a+2) s+b=0$, and consequently Routh's array is:

$$
\begin{array}{lll}
\boldsymbol{s}^{\mathbf{3}} & 1 & a+2 \\
\boldsymbol{s}^{\mathbf{2}} & 3 & b \\
\boldsymbol{s}^{\mathbf{1}} & a+2-b / 3 & \\
\boldsymbol{s}^{\mathbf{0}} & b &
\end{array}
$$

To satisfy Routh's criterion, $b>0$ and $a+2-b / 3>0 \Rightarrow b>0$ and $a>b / 3-2$.

