
EE 4CL4 – Control System Design 

Solutions to Homework Assignment #4 

1. The input-output model for a system is given by: 
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a. Determine the system transfer function. 

b. Compute the unit step response with zero initial conditions. 

c. Repeat with initial conditions y(0) = −1 and ( )0y&  = 2. (25 pts) 

a. The system transfer function H(s) can be determined by taking the Laplace transform of the 
differential equation with zero initial conditions: 
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b. To compute the unit step response y(t) with zero initial conditions, we compute the inverse 
Laplace transform for Y(s)=H(s)U(s)=H(s)/s, giving: 
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c. To compute the unit step response y(t) with initial conditions y(0) = −1 and  = 2, we can 
compute the Laplace transform as for part a., but including the values for the initial conditions.  
The inverse Laplace transform of Y(s) can then be calculated for U(s)=1/s, giving: 
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A different approach is to use the result from part b. where we have computed the system’s 
natural modes.  The new output has the general form: 
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where the constants K1 and K2 are chosen to satisfy the initial conditions, i.e.: 
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The above equations are satisfied for K1 = −3, K2 = 7/4. 
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2. Analyze, for ℜ∈β , the frequency response of the AME and the MME when the true and the 
nominal models are given by: 
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respectively. 

Is the AME low-pass, band-pass or high-pass?  What about the MME? (25 pts) 

From the given equations, the AME is: 
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and the MME is: 
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To obtain the frequency response of the AME and MME we substitute s = jω into the above 
equations, giving: 
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From these equations it can be seen that the AME is band-pass, while the MME is high-pass. 

3. A parallel connection of 2 systems is illustrated by the following block diagram: 

1
1
+s

4
3
+s

( )sU ( )sY

 
−

 
+

 

a. What is the transfer function from u to y? 

b. What are the system poles and zero? 

c. Calculate the system step response.  How does the system zero influence the shape of the 
step response? (25 pts) 
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a. The transfer function H(s) from u to y is: 
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b. The system poles are the combination of the poles of the individual systems, i.e., s = −1 and s = 
−4.  The system zero is located at s = 0.5, i.e. it is a non-minimum-phase zero. 

c. The step response is given by: 
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The initial movement of y(t) is in the positive direction ( )( )20 =y& , but the steady state value of 
y is negative ( )( .  That is, the non-minimum-phase zero creates an undershoot 
in the step response. 
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4. Calculate the steady-state responses when a unit step is applied to the following systems, 
commenting on the differences observed. 
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Partial fraction decomposition of Y(s)=G(s)U(s)=G(s)/s for each of the above transfer function 
gives: 
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respectively.  The inverse Laplace transform of each of these equations is: 
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Alternatively, the steady-state step responses can be calculated via the final value theorem. 

The main difference between these two systems lies in the d.c. gains. The second system has a zero 
at the origin, thus it has zero d.c. gain, and the unit step response vanishes asymptotically. 
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