EE 4CL4 - Control System Design

Solutions to Homework Assignment \#4

1. The input-output model for a system is given by:

$$
\ddot{y}(t)+7 \dot{y}(t)+12 y(t)=3 u(t), \quad \text { where } \ddot{y}(t)=\frac{\mathrm{d}^{2} y(t)}{\mathrm{d} t^{2}} \text { and } \dot{y}(t)=\frac{\mathrm{d} y(t)}{\mathrm{d} t} .
$$

a. Determine the system transfer function.
b. Compute the unit step response with zero initial conditions.
c. Repeat with initial conditions $y(0)=-1$ and $\dot{y}(0)=2$.
a. The system transfer function $H(s)$ can be determined by taking the Laplace transform of the differential equation with zero initial conditions:

$$
\begin{aligned}
& \mathcal{L}[\ddot{y}(t)+7 \dot{y}(t)+12 y(t)=3 u(t)]=s^{2} Y(s)-s y(0)-\dot{y}(0)+7(s Y(s)-y(0))+12 Y(s)=3 U(s), \\
& \Rightarrow H(s)=\frac{Y(s)}{U(s)}=\frac{3}{s^{2}+7 s+12}=\frac{3}{(s+3)(s+4)} .
\end{aligned}
$$

b. To compute the unit step response $y(t)$ with zero initial conditions, we compute the inverse Laplace transform for $Y(s)=H(s) U(s)=H(s) / s$, giving:

$$
y(t)=\frac{1}{4}-\mathrm{e}^{-3 t}+\frac{3}{4} \mathrm{e}^{-4 t}
$$

c. To compute the unit step response $y(t)$ with initial conditions $y(0)=-1$ and $\dot{y}(0)=2$, we can compute the Laplace transform as for part a., but including the values for the initial conditions. The inverse Laplace transform of $Y(s)$ can then be calculated for $U(s)=1 / s$, giving:

$$
\begin{aligned}
& s^{2} Y(s)+s-2+7(s Y(s)+1)+12 Y(s)=3 U(s) \Rightarrow Y(s)=\frac{-s^{2}-5 s+3}{s(s+3)(s+4)} \\
& y(t)=\frac{1}{4}-3 \mathrm{e}^{-3 t}+\frac{7}{4} \mathrm{e}^{-4 t}
\end{aligned}
$$

A different approach is to use the result from part b. where we have computed the system's natural modes. The new output has the general form:

$$
y(t)=\frac{1}{4}+K_{1} \mathrm{e}^{-3 t}+K_{2} \mathrm{e}^{-4 t},
$$

where the constants K_{1} and K_{2} are chosen to satisfy the initial conditions, i.e.:

$$
y(0)=-1=\frac{1}{4}+K_{1}+K_{2} \quad \text { and } \quad \dot{y}(0)=2=-3 K_{1}-4 K_{2} .
$$

The above equations are satisfied for $K_{1}=-3, K_{2}=7 / 4$.
2. Analyze, for $\beta \in \mathfrak{R}$, the frequency response of the AME and the MME when the true and the nominal models are given by:

$$
G(s)=\frac{\beta s+2}{(s+1)(s+2)} \quad \text { and } \quad G_{o}(s)=\frac{2}{(s+1)(s+2)},
$$

respectively.
Is the AME low-pass, band-pass or high-pass? What about the MME?
From the given equations, the AME is:

$$
G_{\epsilon}(s)=G(s)-G_{o}(s)=\frac{\beta s}{(s+1)(s+2)},
$$

and the MME is:

$$
G_{\Delta}(s)=\frac{G_{\epsilon}(s)}{G_{o}(s)}=\frac{\beta s}{2} .
$$

To obtain the frequency response of the AME and MME we substitute $s=j \omega$ into the above equations, giving:

$$
G_{\epsilon}(j \omega)=\frac{\beta j \omega}{(j \omega+1)(j \omega+2)} \quad \text { and } \quad G_{\Delta}(j \omega)=\frac{\beta j \omega}{2} .
$$

From these equations it can be seen that the AME is band-pass, while the MME is high-pass.
3. A parallel connection of $\mathbf{2}$ systems is illustrated by the following block diagram:

a. What is the transfer function from \boldsymbol{u} to \boldsymbol{y} ?
b. What are the system poles and zero?
c. Calculate the system step response. How does the system zero influence the shape of the step response?
a. The transfer function $H(s)$ from u to y is:

$$
H(s)=\frac{3}{s+4}-\frac{1}{s+1}=\frac{2 s-1}{(s+1)(s+4)}
$$

b. The system poles are the combination of the poles of the individual systems, i.e., $s=-1$ and $s=$ -4 . The system zero is located at $s=0.5$, i.e. it is a non-minimum-phase zero.
c. The step response is given by:

$$
y(t)=\mathcal{L}^{-1}[H(s) / s]=\mathcal{L}^{-1}\left[\frac{2 s-1}{s(s+1)(s+4)}\right]=-\frac{1}{4}\left(1-4 \mathrm{e}^{-t}+3 \mathrm{e}^{-4 t}\right) .
$$

The initial movement of $y(t)$ is in the positive direction $(\dot{y}(0)=2)$, but the steady state value of y is negative $(y(t \rightarrow \infty)=-1 / 4)$. That is, the non-minimum-phase zero creates an undershoot in the step response.
4. Calculate the steady-state responses when a unit step is applied to the following systems, commenting on the differences observed.

$$
\begin{aligned}
& G(s)=\frac{1}{s^{3}+3 s^{2}+3 s+1}, \text { (Hint: you will need to use the Laplace-transform property } \\
& \qquad \begin{array}{l}
\mathcal{L}\left[t^{k} y(t)\right]=(-1)^{k} \frac{\mathrm{~d}^{k} Y(s)}{\mathrm{d} s^{k}} \text { for one inverse Laplace } \\
\text { transform) }
\end{array}
\end{aligned}
$$

$$
\begin{equation*}
G(s)=\frac{s^{2}+2 s}{s^{3}+3 s^{2}+3 s+1} \tag{25pts}
\end{equation*}
$$

Partial fraction decomposition of $Y(\mathrm{~s})=G(\mathrm{~s}) U(\mathrm{~s})=G(\mathrm{~s}) / s$ for each of the above transfer function gives:

$$
Y(s)=\frac{1}{s(s+1)^{3}}=\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}-\frac{1}{(s+1)^{3}} \quad \text { and } \quad Y(s)=\frac{s+2}{(s+1)^{3}}=\frac{1}{(s+1)^{2}}+\frac{1}{(s+1)^{3}},
$$

respectively. The inverse Laplace transform of each of these equations is:

$$
y(t)=1-\mathrm{e}^{-t}-t \mathrm{e}^{-t}-\frac{1}{2} t^{2} \mathrm{e}^{-t} \quad \text { and } \quad y(t)=t \mathrm{e}^{-t}+\frac{1}{2} t^{2} \mathrm{e}^{-t}
$$

respectively. Note that $\mathcal{L}^{-1}\left[\frac{1}{(s+1)^{3}}\right]=\mathcal{L}^{-1}\left[\frac{1}{2}(-1)^{2} \frac{\mathrm{~d}^{2} F(s)}{\mathrm{d} s^{2}}\right]=\frac{1}{2} t^{2} \mathrm{e}^{-t}$ if $F(s)=\frac{1}{s+1}$.
Alternatively, the steady-state step responses can be calculated via the final value theorem.
The main difference between these two systems lies in the d.c. gains. The second system has a zero at the origin, thus it has zero d.c. gain, and the unit step response vanishes asymptotically.

