EE 4CL4 - Control System Design

Solutions to Homework Assignment \#5

1. Determine the open-loop transfer function of the system generating the root locus plot shown in Figure 1.

Figure 1
The open-loop poles of this system are at $s=-1,-2$ and -3 . There is one finite open-loop zero at s $=-4$ and two implicit zeros at ∞. Thus the open-loop transfer function of this system is of the form:

$$
H(s)=\lambda \frac{s+4}{(s+1)(s+2)(s+3)}
$$

where λ is the gain-parameter varied to created the root-locus plot.
2. Determine the PID controller parameters (for the standard form) for a plant with the nominal model:

$$
G_{o}(s)=\frac{-s+2}{(s+2)^{2}}
$$

using the Ziegler-Nichols oscillation method.
The closed-closed characteristic polynomial for this nominal plant model in a one-d.o.f. unityfeedback loop with a proportional controller is:

$$
1+K_{p} G_{o}(s)=(s+2)^{2}+K_{p}(-s+2)=0 .
$$

At the point of critical stability, $K_{p}=K_{c}$ and $s=j \omega_{c}$, such that:

$$
(s+2)^{2}+K_{p}(-s+2)=\left(j \omega_{c}+2\right)^{2}+K_{c}\left(-j \omega_{c}+2\right)=0
$$

$$
\Rightarrow K_{c}=\frac{-\left(j \omega_{c}+2\right)^{2}}{\left(-j \omega_{c}+2\right)}=\frac{6 \omega_{c}{ }^{2}-8+j\left(\omega_{c}{ }^{3}-12 \omega_{c}\right)}{\omega_{c}{ }^{2}+4} .
$$

The critical gain $K_{c} \in \mathfrak{R}$, so the complex term in the equation above must equal zero, which gives:

$$
\omega_{c}^{3}-12 \omega_{c}=0 \Rightarrow \omega_{c}=2 \sqrt{3} \Rightarrow P_{c}=\frac{2 \pi}{\omega_{c}}=\frac{\pi}{\sqrt{3}} .
$$

Substituting the value for ω_{c} into the equation for K_{c} yields:

$$
K_{c}=\frac{6 \omega_{c}{ }^{2}-8}{\omega_{c}{ }^{2}+4}=\frac{6 \cdot 12-8}{12+4}=4 .
$$

From Table 6.1 of Goodwin et al., the PID parameters are then:

$$
\begin{aligned}
& K_{p}=0.6 K_{c}=2.4, \\
& T_{r}=0.5 P_{c}=0.9069, \text { and } \\
& T_{d}=P_{c} / 8=0.2267 .
\end{aligned}
$$

3. Use the pole placement method to synthesize a controller $C(s)$ for the nominal plant model:

$$
G_{o}(s)=\frac{1}{(s+2)^{2}},
$$

that produces the nominal closed-loop characteristic polynomial $A_{c l}(s)=\left(s^{2}+4 s+9\right)(s+8)$, using Matlab to solve the matrix equations.

The eliminant matrix for a nominal plant model with a maximum degree of 2 is:

$$
\mathbf{M}_{\mathbf{e}}=\left[\begin{array}{cccc}
a_{2} & 0 & b_{2} & 0 \\
a_{1} & a_{2} & b_{1} & b_{2} \\
a_{0} & a_{1} & b_{0} & b_{1} \\
0 & a_{0} & 0 & b_{0}
\end{array}\right],
$$

and the controller to be synthesized is of the form:

$$
C(s)=\frac{p_{1} s+p_{0}}{l_{1} s+l_{0}} .
$$

The pole-assignment matrix equation for this system is then:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
4 & 1 & 0 & 0 \\
4 & 4 & 1 & 0 \\
0 & 4 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
l_{1} \\
l_{0} \\
p_{1} \\
p_{0}
\end{array}\right]=\left[\begin{array}{c}
1 \\
12 \\
41 \\
72
\end{array}\right] \Rightarrow\left[\begin{array}{c}
l_{1} \\
l_{0} \\
p_{1} \\
p_{0}
\end{array}\right]=\left[\begin{array}{c}
1 \\
8 \\
5 \\
40
\end{array}\right],
$$

giving the controller $C(s)=\frac{5 s+40}{s+8}$.
4. Find suitable PID controller parameters (for the standard form) for a plant with the nominal model:

$$
\begin{equation*}
G_{o}(s)=\frac{10}{(s+1)(s+10)} \tag{1}
\end{equation*}
$$

using the reaction curve method with:
a. the Ziegler-Nichols parameters, and
b. the Cohen-Coon parameters.

The process reaction curve for this plant can be obtained by calculating the unit step response $y(t)$ of the plant in open loop:

$$
\begin{aligned}
& Y(s)=G_{o}(s) U(s)=\frac{10}{s(s+1)(s+10)} \\
& \Rightarrow y(t)=\mathcal{L}^{-1}[Y(s)]=\mathcal{L}^{-1}\left[\frac{10}{s(s+1)(s+10)}\right]=1-\frac{10}{9} \mathrm{e}^{-t}+\frac{1}{9} \mathrm{e}^{-10 t} .
\end{aligned}
$$

The slope of $y(t)$ is then:

$$
\dot{y}(t)=\frac{10}{9} \mathrm{e}^{-t}-\frac{10}{9} \mathrm{e}^{-10 t},
$$

and the maximal slope can be found at the time t when the derivate of the slope is zero:

$$
\begin{aligned}
& \ddot{y}(t)=-\frac{10}{9} \mathrm{e}^{-t}+\frac{100}{9} \mathrm{e}^{-10 t}=0 \\
& \Rightarrow-\mathrm{e}^{-t}+10 \mathrm{e}^{-10 t}=0 \\
& 10 \mathrm{e}^{-10 t}=\mathrm{e}^{-t} \\
& 10 \mathrm{e}^{-10 t} \mathrm{e}^{t}=1 \\
& \mathrm{e}^{-9 t}=1 / 10 \\
&-9 t=\log _{\mathrm{e}}(1 / 10) \\
& t=-\frac{\log _{\mathrm{e}}(1 / 10)}{9} \approx 0.2558
\end{aligned}
$$

The maximal slope is then:

$$
\dot{y}(2.558)=\frac{10}{9} \mathrm{e}^{-0.2558}-\frac{10}{9} \mathrm{e}^{-2.558}=0.7743,
$$

at the point $t=0.2558, y(0.2558)=0.1483$, giving the maximum slope tangent:

$$
\text { m.s.t. }=0.7743(t-0.2558)+0.1483 .
$$

The m.s.t. is equal to $y_{0}=0$ at time $t_{1}=0.0643$ and is equal to $y_{\infty}=1$ at $t_{2}=1.3558$. The unit step ($u_{0}=0 ; u_{\infty}=1$) was applied at time $t_{0}=0$, giving the parameter model:

$$
K_{0}=\frac{y_{\infty}-y_{0}}{u_{\infty}-u_{0}}=1 ; \quad \quad \tau_{0}=t_{1}-t_{0}=0.0643 ; \quad \quad v_{0}=t_{2}-t_{1}=1.2915
$$

a. From Table 6.2 of Goodwin et al., the Ziegler-Nichols PID parameters are then:

$$
\begin{aligned}
& K_{p}=\frac{1.2 v_{0}}{K_{0} \tau_{0}}=24.1026, \\
& T_{r}=2 \tau_{0}=0.1286, \text { and } \\
& T_{d}=0.5 \tau_{0}=0.0321
\end{aligned}
$$

b. From Table 6.3 of Goodwin et al., the Cohen-Coon PID parameters are:

$$
\begin{aligned}
& K_{p}=\frac{v_{0}}{K_{0} \tau_{0}}\left[\frac{4}{3}+\frac{\tau_{0}}{4 v_{0}}\right]=27.0307, \\
& T_{r}=\frac{\tau_{0}\left[32 v_{0}+6 \tau_{0}\right]}{13 v_{0}+8 \tau_{0}}=0.1550, \text { and } \\
& T_{d}=\frac{4 \tau_{0} v_{0}}{11 v_{0}+2 \tau_{0}}=0.0232 .
\end{aligned}
$$

