
EE 4CL4 – Control System Design 

Solutions to Homework Assignment #6 

1. For the system with the open-loop frequency response generating the Nyquist plot shown in 
Fig. 1, estimate the: 
a. stability gain margin, 
b. stability phase margin, and 
c. sensitivity peak. (25 pts) 
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Figure 1 

a. The stability gain margin ( )aM g 10log20−=
∆

.  From Fig. 1, a ≈ –0.77 ⇒ Mg ≈ 2.27 dB. 

b. The stability phase margin .  From Fig. 1, φ  ≈ 0.135 rad ⇒ Mφ
∆

=fM f ≈ 0.135 rad or 7.73°. 
c. The sensitivity peak ( ) ηω

ω
1max =jSo .  From Fig. 1, η  ≈ 0.12 ⇒ ( ) 33.8max ≈ω

ω
jSo . 
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2. The nominal model for a plant is given by: 

( ) ( )( )21
1

+−+
=

ss
sGo . 

Assume that this plant has to be controlled in a one-d.o.f. feedback loop such that the closed-
loop characteristic polynomial is dominated by the factor s .  Using the pole 
placement method, choose an appropriate minimum degree A

2572 ++ s
cl(s) and synthesize a biproper 

controller C(s) that has forced integration (i.e., one pole at s = 0). (25 pts) 

We first notice that a minimum degree biproper controller (with integration) requires Acl(s) of 
degree 4 (= 2n). We thus choose Acl(s) = (s2 + 7s + 25)(s + 10)2.  The choice of the double pole at s 
= −10 is arbitrary but for the requirement that they should generate modes faster than those 
produced by the factor s2 +7s+25. 

The associated Diophantine equation is: 

( ) ( ) ( )( ) ( )( )22
01

2
201

2 1025712 +++=++−++−− ssspspsplslsss , 

producing the pole-assignment matrix equation: 
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We thus obtain: 
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3. Consider the feedback control of an unstable plant.  Prove that the controller output u(t), 
exhibits undershoot for any step reference and for any step-output disturbance. (25 pts) 
The transfer function from the reference and the output disturbance to the controller output is given 
by: 

U(s) = Suo(s)(R(s) − Do(s)) 

When the plant has unstable poles, they cannot be cancelled and thus they appear as non-minimum-
phase zeros in Suo(s).  If zo > 0 is any non-minimum-phase zero in Suo(s), then Suo(zo) = 0.  From 
Lemma 4.1 on Page 81 of Goodwin et al.: 

( ) ( ) 0limde
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0 ==
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∞
−∫ sUttu

ozs

tz . 

For this equation to be satisfied, u(t) will necessarily exhibit undershoot (i.e., be negative for some 
period of the response) for any step reference and step-output disturbance. 
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4. The nominal model for a plant is given by: 

( ) ( )
( )( )51

15
−+

−
=

ss
ssGo . 

This plant has to be controlled in a one-d.o.f. unity-feedback loop. 

a. Determine the time-domain integral constraints for the plant input u(t), the plant output 
y(t), and the controller error e(t) in the loop.  Assume exact inversion at ω = 0 (see page 
210 of Goodwin et al.) and step-like reference and disturbances (input and output). 

b. Discuss why the control of this nominal plant especially difficult.  Hint: What constraints 
should be placed on the closed-loop bandwidth? (25 pts) 

a. In this particular case we have that the plant model and the controller satisfies Bo(1) = 0; Ao(5) 
= 0; L(0) = 0.  The zero in L(s) at s = 0 is required for exact inversion at ω = 0. 

The constraints for the sensitivities derive from the interpolation constraints required to achieve 
internal stability (no cancellation of unstable poles and NMP zeros). These constraints are: 

So(1) = 1; So(5) = 0; To(1) = 0; To(5) = 1; Sio(1) = 0; Suo(5) = 0. 

First, the reference effect will be seen in y(t), u(t) and e(t), and their integral properties: 
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Likewise, the effect of a unit step input disturbance is: 
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The effect of a unit step output disturbance is: 
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b. This case is especially difficult because of contradicting requirements: 

• The open-loop NMP zero at s = 1 sets an upper bound for the closed-loop bandwidth, since 
the integral constraint ∫  derived above says that a plant output which settles 

much faster than e

( ) 0de
0

=
∞ − tty t

−t will exhibit a large undershoot. 

• The unstable open-loop pole at s = 5 sets a lower bound for the closed loop bandwidth, 
since the integral constraint ∫  derived above says that a plant output which 

settles much slower than e

( ) 0de
0

5 =− tte t∞

−5t will exhibit a large overshoot. 
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