EE 4CL4 – Control System Design

Homework Assignment #7

1. Consider a plant with the nominal model:

$$G_o(s) = \frac{e^{-0.5s}(s+5)}{(s+1)(s+3)}$$

Build a Smith predictor such that the dominant closed-loop poles are located at $s = -2 \pm j0.5$ and the controller *C*(*s*) has forced integration (i.e., one pole at *s* = 0).

What is the nominal complementary sensitivity of the closed-loop system? (25 pts)

2. The nominal model for a plant is given by:

$$G_o(s) = \frac{1}{(s+2)(s+1)^2}$$
.

Using the Ziegler-Nichols Oscillation Method to determine the controller parameters, design a PI controller *that prevents wind-up* if the plant actuator is known to have a maximal movement limit for an input u(t) of -3 and +5. (25 pts)

- 3. Determine the steady-state error in response to an "acceleration" reference $r(t) = At^2/2$ for a oned.o.f. unity-feedback control loop with:
 - a. one,
 - b. two, and
 - c. three

open-loop integrators (i.e., poles at s = 0), assuming that the open-loop controller and plant satisfy Eqs. (8.6.8)–(8.6.10) of Goodwin et al. (25 pts)

4. Consider the feedback control of a plant with nominal model:

$$G_o(s) = \frac{s+1}{s(s+3)}.$$

- a. Use the pole placement method to synthesize a controller such that the closed-loop poles are at (-2; -2; -2).
- b. Prove that a one-d.o.f. unity-feedback control loop consisting of this plant and controller must exhibit overshoot in response to a step reference.
- c. Design a reference prefilter H(s) to create a two-d.o.f. control loop that does not exhibit overshoot. (25 pts)