
EE 4CL4 – Control System Design 

Solutions to Homework Assignment #7 

1. Consider a plant with the nominal model: 
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Build a Smith predictor such that the dominant closed-loop poles are located at s = −2 ± j0.5 
and the controller C(s) has forced integration (i.e., one pole at s = 0). 

What is the nominal complementary sensitivity of the closed-loop system? (25 pts) 

A Smith predictor is shown in Figure 7.1 of Goodwin et al.  We need to synthesize a controller 
considering only the rational part, ( )sGo , of the nominal model, Go(s), where: 
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If the dominant closed loop poles are −2 ± j0.5, and we require integration, we can build a closed 
loop polynomial of the form Acl(s) = (s2+4s+4.25)(s2+8s+16).  Thus: 
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producing the pole-assignment matrix equation: 
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Consequently the controller has the denominator and numerator polynomials L(s) = s(s + 4.7687) 
and P(s) = 3.2313s2 + 14.0188s + 13.6, respectively. 

The nominal complementary sensitivity is then: 
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2. The nominal model for a plant is given by: 
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Using the Ziegler-Nichols Oscillation Method to determine the controller parameters, design 
a PI controller that prevents wind-up if the plant actuator is known to have a maximal 
movement limit for an input u(t) of −3 and +5. (25 pts) 

Under proportional control with gain Kp, the closed-loop characteristic polynomial Acl(s) = 
s3+4s2+5s+2+Kp.  At the critical-stability point, Kp = Kc and s = jωc, such that: 
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The critical gain ℜ∈cK , so the complex term in the equation above must equal zero, which gives: 

5
225053 π

ω
πωωω ==⇒=⇒=−
c

cccc P . 

Substituting the value for ωc into the equation for Kc yields: 
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From Table 6.1 of Goodwin et al., the PI parameters are then: 
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producing the PI controller: 
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It is possible to implement this PI controller in the architectural form shown in Fig. 8.9 of Goodwin 
et al. by setting p1 = 8.1 and p0 = 3.4592.  To avoid wind-up, the limiter needs to be of the form 
shown in Fig. 8.10 of Goodwin et al. with umin = −3 and umax = 5. 
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3. Determine the steady-state error in response to an “acceleration” reference r(t) = At2/2 for a 
one-d.o.f. unity-feedback control loop with: 
a. one, 
b. two, and 
c. three 
open-loop integrators (i.e., poles at s = 0), assuming that the open-loop controller and plant 
satisfy Eqs. (8.6.8)–(8.6.10) of Goodwin et al. (25 pts) 

The Laplace transform of the “acceleration” reference r(t) is: 

( ) 3sASR = , 

producing the steady state error for this system: 
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a. If the control loop has only one open-loop integrator, then an s term remains in the denominator 
of the equation above and the steady-state error is therefore infinite. 

b. If the control loop has two open-loop integrators, then no s term remains in the denominator of 
the equation above and the steady-state error is therefore Ac0/c1. 

c. If the control loop has three open-loop integrators, then there is an s term in the numerator of 
the equation above and the steady-state error is therefore zero. 

4. Consider the feedback control of a plant with nominal model: 
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a. Use the pole placement method to synthesize a controller such that the closed-loop poles 
are at (−2; −2; −2). 

b. Prove that a one-d.o.f. unity-feedback control loop consisting of this plant and controller 
must exhibit overshoot in response to a step reference. 

c. Design a reference prefilter H(s) to create a two-d.o.f. control loop that does not exhibit 
overshoot. (25 pts) 
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a. The close-loop characteristic polynomial is Acl(s) = s3+6s2+12s+8.  Thus: 
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producing the pole-assignment matrix equation: 
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giving the controller ( )
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b. The nominal complimentary sensitivity of the controller and nominal plant model above placed 
in a one-d.o.f. unity-feedback loop is: 
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Consequently, To(−1) = 0 and So(−1) = 1.  The error in response to a unit step reference is then: 
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The error is initially positive, but the integral is negative, thus the error must change sign, i.e., 
the step response exhibits overshoot. 

An alternative solution is to calculate the step response y(t) and show that  for some 
value of t between 0 and ∞. 
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c. In order to remove the overshoot, the reference prefilter H(s) must cancel the plant zero to the 
right of the closed-loop poles, i.e., at s = −1.  Choosing: 
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produces a step response: 
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We find that  for ( ) ∞< yty ∞<< t0 , i.e., the step response exhibits no overshoot. 
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