
EE 4CL4 – Control System Design 

Solutions to Homework Assignment #8 

1. Consider a feedback control loop where: 
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a. Verify Lemma 9.1 on page 242 of Goodwin et al. for this open-loop transfer function.  
Note that if the integral cannot be solved analytically, then you may calculate a numerical 
approximation using the MATLAB function quadl().  If you use this function, please 
include in your report the exact MATLAB command(s) that you used. 
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Then, to verify Lemma 9.1 we compute: 
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This can be approximated numerically using the MATLAB command: 
quadl('log(abs(i*w.*(i*w+4)./(-w.^2+4*i*w+9)))',0,1e5) 

giving the answer −9.0773e−005 ≈ 0. 

From Lemma 9.1, for an open-loop transfer function without a delay term this integral should 
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approximation of the integral confirms Lemma 9.1 for this case. 
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This integral can be approximated numerically using the MATLAB command: 
quadl('log(abs(i*w.*(i*w+4)./(-w.^2+21*i*w+100)))',0,1e5) 

giving the answer −26.7024 ≈ −8.5π. 

For this G , ( ) ( )sCso 17=κ  and consequently this integral should equal ππκ 5.8
2

−=− .  Once 

again the numerical approximation of the integral confirms Lemma 9.1 for this case. 

2. The nominal model for a plant is given by: 
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a. Use the pole placement method to synthesize a controller such that the closed-loop poles 
are at (−2; −2; −2). 

b. Verify Lemma 9.2 on page 244 of Goodwin et al. for this plant and controller placed in a 
unity-feedback loop.  Again, if you use the MATLAB function quadl(), please include in 
your report the exact MATLAB command(s) that you used. 

c. Verify Lemma 9.5 on page 249 of Goodwin et al. for this plant and controller placed in a 
unity-feedback loop.  Again, if you use the MATLAB function quadl(), please include in 
your report the exact MATLAB command(s) that you used. (50 pts) 

a. The pole-assignment matrix equation for this system is: 
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b. For this controller and nominal plant model, the nominal sensitivity is: 
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Then, to verify Lemma 9.2 we compute: 
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This can be approximated numerically using the MATLAB command: 
quadl('log(abs((-i*w.^3+8.375*w.^2+12.5*i*w+21.875)./(-
i*w.^3-6*w.^2+12*i*w+8)))',0,1e5) 

giving the answer 6.8721. 
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For this system, the open-loop transfer function is: 
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giving 375.14=κ ,  and n{ } 375.92
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Lemma 9.2 for this case. 

c. To verify Lemma 9.5, we note that the open-loop transfer function has one non-minimum-
phase zero at s = 1, and therefore c1 = γ1 + jδ1 = 1 + j0.  We then compute: 
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This can be approximated numerically using the MATLAB command: 
quadl('log(abs((-i*w.^3+8.375*w.^2+12.5*i*w+21.875)./(-
i*w.^3-6*w.^2+12*i*w+8))).*2./(1+w.^2)',0,1e5) 

giving the answer 2.7354. 

The open-loop transfer function has two open-loop poles, so the Blaschke product: 
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Consequently the integral should equal ( ) 7358.2ln 1 =cBpπ− , and thus the numerical 
approximation of the integral confirms Lemma 9.5 for this case. 
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3. A plant model is given by: 
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Approximating the delay by 
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9.1 (on pages 249 and 251, respectively, of Goodwin et al.), with e = 0.1 and ωl = 3 to derive a 
lower bound for the nominal sensitivity peak. (25 pts) 
Using the approximation given for the delay, the nominal plant model is: 

( ) ( )( )1126
126

2

2

+++
+−

=
sss

sssGo . 

We note that Go(s) has two NMP phase zeros, located at s = 3.00 ± j1.73.  Then, to apply Eq. 
(9.4.16) on page 251 of Goodwin et al., we need to compute Ω(ci, ωl) for both zeros using Eq. 
(9.4.8) on page 250 of Goodwin et al.  This yields: 
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Thus, the worst case is for the zero located at s = c1, since this maximizes the right hand side in Eq. 
(9.4.16) on page 251 of Goodwin et al., leading to: 
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