
EE 4CL4 – Control System Design 

Solutions to Midterm Exam 2003 

1. The figure below shows a simple pendulum system in which a cord is wrapped around a fixed 
cylinder.  The motion of the system that results is described by the differential equation: 

( ) ( ) 0sin 2 =+++ θθθθ RgRl , 

where l is the length of the cord in the vertical (down) position and R is the radius of the 
cylinder. 

 

a. Write the state space equations for this system. 

b. Linearize the equation around the point 0=θ , , and show that for small values of θ 
the system equation reduces to an equation for a simple pendulum, that is, 

0=θ
( ) 0=+ θθ lg .

 (25 pts) 

a. Let ( ) θ=tx1 ,  and ( ) θ=tx2 ( ) θ=ty .  Substituting these into the differential equation gives: 

( )( ) ( ) ( )( ) ( ) 0sin 2
2121 =+++ tRxtxgtxtRxl  

( ) ( )( ) ( )
( )( )tRxl

tRxtxgtx
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2
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2
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+
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the rate of change of the second state variable with respect to the present values of the state 
variables.  We can determine the rate of change of the first state variable directly from its 
definition: 

( ) ( )txtx 21 ==θ . 

Likewise, from its definition, ( ) ( )txty 1==θ . 

The state space equations for this system are then: 

( ) ( )txtx 21 = , 

( ) ( )( ) ( )
( )( )tRxl
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( ) ( )txty 1= . 
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b. To linearize a state space model with two state variables x1(t) and x2(t) and one output variable 
y(t), i.e.,: 
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( ) ( ))(tgty x= , 

around an operating point (x1Q, x2Q, yQ), we define three new variables, ∆x1(t) = x1(t) − x1Q, 
∆x2(t) = x2(t) − x2Q, and ∆y(t) = y(t) − yQ, and use the following 1st-order Taylor series 
approximations: 
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For the state space equations derived in part a, these yield: 

( ) ( )txtx 21 ∆=∆ , 
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( ) ( )txty 1∆=∆ . 

The first and last of these equations are independent of the operating point.  Evaluating the 
second equation for the given operating point 0=θ , ⇒ x0=θ 1Q = x2Q = yQ = 0, gives: 
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Substituting our definitions of ∆x1(t) and ∆x2(t) into this equation produces: 

( ) 0=+⇒−= θθθθ lg
l
g , 

the equation for a simple pendulum. 

[The equations for ∆  and  follow directly from the definitions and provide no further 
information about the behaviour of the system.] 

( )tx1 ( )ty∆
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2. In a nominal control loop, the complimentary sensitivity is given by: 

( ) ( )( )101
1
++

=
ss

sTo . 

If the system has an input disturbance di(t) = 2sin(0.5t), what does this input disturbance 
contribute to the plant input u(t) in the steady state? (25 pts) 

From the one-d.o.f. closed-loop system equations, the contribution of an input disturbance to the 
plant output in the steady state is determined by: 

( ) ( ) ( )sDsTsU io−= . 

For a sinusoidal disturbance, this equation is most easily solved by phasor analysis, i.e.: 

( ) ( ) ( )( )( )5.05.0sin25.0 jTtjTtu oo −∠+×−= . 

Substituting for s = j0.5 in the equation for the nominal complimentary sensitivity gives: 

( ) ( )( ) ( ) 089305.0
105.015.0

15.0 .jT
jj

jT oo =−⇒
++

=  and  rad, ( )( ) 628025.0 .jTo =−∠

yielding: 

( ) ( )628025.0sin17870 .t.tu += . 

Alternatively, U(s) can be calculated by taking the Laplace transform of di(t): 
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u(t) can then be obtained from the inverse Laplace transform of U(s): 
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The exponential terms go to zero as t , leaving the sinusoidal terms.  The sum of these 
sinusoids can be found via the Fourier transform: 

∞→

( ) ( ) ( ) ( ) ([ ]5.05.0178705.0sin
2005
3125.0cos

2005
176 6280.2 −−+×=



 −= − ωδωδπω je.ttU jF )  

Making use of the “Delay property” of the Fourier transform, the inverse Fourier transform gives: 

( ) ( )628025.0sin17870 .t.tu += . 
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3. Find the impulse response of the following linear transfer function: 

( ) ( )( )( )431
12

+++
=

sss
sH . (25 pts) 

The impulse response h(t) of the system is the inverse Laplace transform of the transfer function.  
Partial fraction decomposition of the given transfer function produces: 
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4. Find the range of values of K under which the controller: 

( ) ( )
( )10

2
+
+=

s
sKsC  

stabilizes the unstable nominal plant model: 

( ) ( )1
1
−

=
ss

sGo , 

when placed together in a one-degree-of-freedom unity-feedback loop. (25 pts) 

For this plant and controller, the characteristic polynomial Acl(s) = Ao(s)L(s) + Bo(s)P(s) = s(s−1) 
(s+10) + K(s+2) = s3 + 9s2 + (K−10)s + 2K, and consequently Routh’s array is: 

s3 1 K−10 

s2 9 2K 

s1 10
9
7 −K  

 

s0 2K  

For closed-loop stability, Routh’s criterion states that there must be no changes of sign in the first 

column of the array.  Consequently, 10
9

−K7  >0 and 2K > 0 ⇒ K > 90/7 (≈ 12.8571). 
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5. Consider a system having the following calibration and nominal models: 

( ) ( )
1

1
−

=
s

sFsG  and ( ) ( )
2

2
−

=
s

sFsoG , 

where F(s) is a proper, stable, and minimum-phase transfer function.  Prove the following: 

a. , i.e., the multiplicative modeling error equals −1 when s = 2. ( ) 12 −=∆G

b. The error sensitivity, ( ) ( ) ( )sGsT
sS

o ∆

∆

∆ +
=

1
1 , is unstable, having a pole at s = 2, where To(s) 

is the complementary sensitivity of an internally stable control loop. 

c. The achieved sensitivity  can be stable even though  is unstable. 
 (25 pts) 

( ) ( ) ( )sSsSsS o∆= ( )sS∆

a. The MME for this system is: 
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Letting s = 2 yields G . ( ) 12 −=∆

b. Since the nominal loop is internally stable, then C(s) cannot cancel the pole of Go(s) located at s 
= 2.  Consequently, So(2) = 0 and To(2) = 1 − So(2) = 1.  We have proven in part a that 

, so we can evaluate the error sensitivity at s = 2: ( ) 12 −=∆G
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Thus, the error sensitivity is unstable having a pole at s = 2. 

An alternative solution is: 
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which has an unstable pole at s = 2. 

c. We also notice that, since So(s) has a zero at s = 2, the achieved sensitivity S(s) = S∆(s)So(s) has 
no pole at s = 2, since the pole of S∆(s) at s = 2 is cancelled by the zero of So(s) at the same 
location. 
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