ELEC ENG 4CL4 - Control System Design

Homework Assignment \#1

Submission deadline: 12 noon on Friday, January 30, 2004, in the designated drop box in CRL-101B (the CRL photocopying room).

1. Consider a system that obeys the differential equation:

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+\cos x=0
$$

a. Linearize this equation around the operating point $x=\pi / 4$.
b. Derive a state-space representation of the linear equation found in part a.
(25 pts)
2. A two-phase (i.e., two-input) permanent magnet stepper motor can be described by the following set of differential equations:

$$
\begin{aligned}
& \frac{d^{2} \theta}{d t^{2}}=-K_{2} i_{a} \sin \left(K_{3} \theta\right)+K_{2} i_{b} \cos \left(K_{3} \theta\right)-K_{1} \frac{d \theta}{d t} \\
& \frac{d i_{a}}{d t}=-K_{5} i_{a}+K_{4} \frac{d \theta}{d t} \sin \left(K_{3} \theta\right)+K_{6} v_{a} \\
& \frac{d i_{b}}{d t}=-K_{5} i_{b}-K_{4} \frac{d \theta}{d t} \cos \left(K_{3} \theta\right)+K_{6} v_{b}
\end{aligned}
$$

where θ is angular displacement of the rotor, i_{a} and i_{b} are the currents in the two phases, v_{a} and v_{b} are the voltages applied the two phases (i.e., the inputs), and K_{1}, \ldots, K_{6} are constants.
a. Derive a state-space representation of this system.
b. Linearize the state-space model found in part a around the operating point $\theta=$ constant .
(25 pts)
3. Given the following differential equation, solve for $y(t)$ using the Laplace transform if all initial conditions are zero:

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+12 \frac{d y}{d t}+32 y=32 \mu(t) \tag{25pts}
\end{equation*}
$$

where $\mu(t)$ is the unit step function.
4. A system has the transfer function:

$$
H(s)=\frac{10}{(s+7)(s+8)}
$$

a. Compute the system's response to the Dirac delta function (unit impulse) $\delta_{\mathrm{D}}(t)$.
b. Compute the system's response to the unit step function $\mu(t)$.

