ELEC ENG 4CL4 – Control System Design

Homework Assignment #1

Submission deadline: 12 noon on Friday, January 30, 2004, in the designated drop box in CRL-101B (the CRL photocopying room).

1. Consider a system that obeys the differential equation:

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + \cos x = 0$$

- a. Linearize this equation around the operating point $x = \pi/4$.
- b. Derive a state-space representation of the linear equation found in part a. (25 pts)
- 2. A two-phase (i.e., two-input) permanent magnet stepper motor can be described by the following set of differential equations:

$$\frac{d^2\theta}{dt^2} = -K_2 i_a \sin(K_3\theta) + K_2 i_b \cos(K_3\theta) - K_1 \frac{d\theta}{dt},$$
$$\frac{di_a}{dt} = -K_5 i_a + K_4 \frac{d\theta}{dt} \sin(K_3\theta) + K_6 v_a,$$
$$\frac{di_b}{dt} = -K_5 i_b - K_4 \frac{d\theta}{dt} \cos(K_3\theta) + K_6 v_b,$$

where θ is angular displacement of the rotor, i_a and i_b are the currents in the two phases, v_a and v_b are the voltages applied the two phases (i.e., the inputs), and K_1, \ldots, K_6 are constants.

- a. Derive a state-space representation of this system.
- b. Linearize the state-space model found in part a around the operating point θ = constant . (25 pts)
- 3. Given the following differential equation, solve for y(t) using the Laplace transform if all initial conditions are zero:

$$\frac{d^2y}{dt^2} + 12\frac{dy}{dt} + 32y = 32\mu(t),$$

where $\mu(t)$ is the unit step function.

4. A system has the transfer function:

$$H(s) = \frac{10}{(s+7)(s+8)}$$

- a. Compute the system's response to the Dirac delta function (unit impulse) $\delta_{\rm D}(t)$.
- b. Compute the system's response to the unit step function $\mu(t)$. (25 pts)

Dr. Ian C. Bruce

January 14, 2004

(25 pts)