ELEC ENG 4CL4 - Control System Design

Solutions to Homework Assignment \#1

1. Consider a system that obeys the differential equation:

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+\cos x=0
$$

a. Linearize this equation around the operating point $x=\pi / 4$.
b. Derive a state-space representation of the linear equation found in part a.
a. The nonlinear term $\cos x$ is linearized via the Taylor series approximation:

$$
\begin{aligned}
f(x) & =\cos x \approx \cos \left(\frac{\pi}{4}\right)+\left.\frac{d f}{d x}\right|_{x=\frac{\pi}{4}}\left(x-\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)-\sin \left(\frac{\pi}{4}\right)\left(x-\frac{\pi}{4}\right) \\
& =\frac{1}{\sqrt{2}}+\frac{\pi}{4 \sqrt{2}}-\frac{x}{\sqrt{2}}
\end{aligned}
$$

giving the linear equation:

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}-\frac{x}{\sqrt{2}}=-\frac{1}{\sqrt{2}}-\frac{\pi}{4 \sqrt{2}} .
$$

Note that an equivalent model in terms of $\Delta x=x-\frac{\pi}{4}$ is:

$$
\frac{d^{2} \Delta x}{d t^{2}}+2 \frac{d \Delta x}{d t}-\frac{\Delta x}{\sqrt{2}}=-\frac{1}{\sqrt{2}}
$$

b. To obtain a state-space representation of the linearized model, we define two state variables $x_{1}=x$ and $x_{2}=\frac{d x}{d t}$, the input variable $u=\frac{1}{\sqrt{2}}+\frac{\pi}{4 \sqrt{2}}$, and the output variable $y=x$, giving:

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=x_{2} \\
& \frac{d x_{2}}{d t}=\frac{x_{1}}{\sqrt{2}}-2 x_{2}-u \\
& y=x_{1}
\end{aligned}
$$

Note that an equivalent model in terms of $\Delta x=x-\frac{\pi}{4}$ and $\Delta u=\frac{1}{\sqrt{2}}$ is:

$$
\begin{aligned}
& \frac{d \Delta x_{1}}{d t}=\Delta x_{2} \\
& \frac{d \Delta x_{2}}{d t}=\frac{\Delta x_{1}}{\sqrt{2}}-2 \Delta x_{2}-\Delta u, \\
& \Delta y=\Delta x_{1} .
\end{aligned}
$$

2. A two-phase (i.e., two-input) permanent magnet stepper motor can be described by the following set of differential equations:

$$
\begin{aligned}
& \frac{d^{2} \theta}{d t^{2}}=-K_{2} i_{a} \sin \left(K_{3} \theta\right)+K_{2} i_{b} \cos \left(K_{3} \theta\right)-K_{1} \frac{d \theta}{d t} \\
& \frac{d i_{a}}{d t}=-K_{5} i_{a}+K_{4} \frac{d \theta}{d t} \sin \left(K_{3} \theta\right)+K_{6} v_{a} \\
& \frac{d i_{b}}{d t}=-K_{5} i_{b}-K_{4} \frac{d \theta}{d t} \cos \left(K_{3} \theta\right)+K_{6} v_{b}
\end{aligned}
$$

where θ is angular displacement of the rotor, i_{a} and i_{b} are the currents in the two phases, v_{a} and v_{b} are the voltages applied the two phases (i.e., the inputs), and K_{1}, \ldots, K_{6} are constants.
a. Derive a state-space representation of this system.
b. Linearize the state-space model found in part a around the operating point $\theta=$ constant .
a. We assign four state variables $x_{1}=\theta, x_{2}=\frac{d \theta}{d t}, x_{3}=i_{a}$ and $x_{4}=i_{b}$, two input variables $u_{1}=v_{a}$ and $u_{2}=v_{b}$, and one output variable $y=\theta$, giving the state-space representation:

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, u_{1}, u_{2}\right)=x_{2} \\
& \frac{d x_{2}}{d t}=f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, u_{1}, u_{2}\right)=-K_{2} x_{3} \sin \left(K_{3} x_{1}\right)+K_{2} x_{4} \cos \left(K_{3} x_{1}\right)-K_{1} x_{2}, \\
& \frac{d x_{3}}{d t}=f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, u_{1}, u_{2}\right)=-K_{5} x_{3}+K_{4} x_{2} \sin \left(K_{3} x_{1}\right)+K_{6} u_{1}, \\
& \frac{d x_{4}}{d t}=f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}, u_{1}, u_{2}\right)=-K_{5} x_{4}-K_{4} x_{2} \cos \left(K_{3} x_{1}\right)+K_{6} u_{2}, \\
& y=g\left(x_{1}, x_{2}, x_{3}, x_{4}, u_{1}, u_{2}\right)=x_{1} .
\end{aligned}
$$

b. To simplify the linearization of this state-space model, we reformulate it in terms of the distances from the operating point $\left(x_{1 Q}, x_{2 Q}, x_{3 Q}, x_{4 Q}, u_{1 Q}, u_{2 Q}, y_{Q}\right)$:

$$
\begin{aligned}
& \Delta x_{1}=x_{1}-x_{1 Q}, \\
& \Delta x_{2}=x_{2}-x_{2 Q}, \\
& \Delta x_{3}=x_{3}-x_{3 Q}, \\
& \Delta x_{4}=x_{4}-x_{4 Q}, \\
& \Delta u_{1}=u_{1}-u_{1 Q}, \\
& \Delta u_{2}=u_{2}-u_{2 Q}, \\
& \Delta y=y-y_{Q}
\end{aligned}
$$

Defining the vectors:

$$
\Delta \mathbf{x} \triangleq\left[\begin{array}{llll}
\Delta x_{1} & \Delta x_{2} & \Delta x_{3} & \Delta x_{4}
\end{array}\right]^{\mathrm{T}}, \Delta \dot{\mathbf{x}} \triangleq\left[\begin{array}{llll}
\Delta \dot{x}_{1} & \Delta \dot{x}_{2} & \Delta \dot{x}_{3} & \Delta \dot{x}_{4}
\end{array}\right]^{\mathrm{T}} \text { and } \Delta \mathbf{u} \triangleq\left[\begin{array}{ll}
\Delta u_{1} & \Delta u_{2}
\end{array}\right]^{\mathrm{T}},
$$

The linearized state-space model is obtained from the Taylor series approximation in the matrix formulation:

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-K_{2} K_{3} x_{3 Q} \cos \left(K_{3} x_{1 Q}\right)-K_{2} K_{3} x_{4 Q} \sin \left(K_{3} x_{1 Q}\right) & -K_{1} & -K_{2} \sin \left(K_{3} x_{1 Q}\right) & K_{2} \cos \left(K_{3} x_{1 Q}\right) \\
K_{3} K_{4} x_{2 Q} \cos \left(K_{3} x_{1 Q}\right) & K_{4} \sin \left(K_{3} x_{1 Q}\right) & -K_{5} & 0 \\
K_{3} K_{4} x_{2 Q} \sin \left(K_{3} x_{1 Q}\right) & -K_{4} \cos \left(K_{3} x_{1 Q}\right) & 0 & -K_{5}
\end{array}\right] \Delta \mathbf{x} \\
& +\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
K_{6} & 0 \\
0 & K_{6}
\end{array}\right] \Delta \mathbf{u},
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \Delta \mathbf{x}+\left[\begin{array}{ll}
0 & 0
\end{array}\right] \Delta \mathbf{u} \text {. }
\end{aligned}
$$

3. Given the following differential equation, solve for $y(t)$ using the Laplace transform if all initial conditions are zero:

$$
\frac{d^{2} y}{d t^{2}}+12 \frac{d y}{d t}+32 y=32 \mu(t)
$$

where $\mu(t)$ is the unit step function.
The Laplace transform of this equation is:

$$
\begin{aligned}
& s^{2} Y(s)+12 s Y(s)+32 Y(s)=32 \frac{1}{s} \\
& \Rightarrow Y(s)\left\{s^{2}+12 s+32\right\}=\frac{32}{s} .
\end{aligned}
$$

Solving for $Y(s)$ gives:

$$
\begin{aligned}
Y(s) & =\frac{32}{s\left(s^{2}+12 s+32\right)} \\
& =\frac{32}{s(s+4)(s+8)} \\
& =\frac{1}{s}-\frac{2}{s+4}+\frac{1}{s+8} .
\end{aligned}
$$

Taking the inverse Laplace transform of $Y(s)$ we obtain:

$$
y(t)=1-2 e^{-4 t}+e^{-8 t}, \quad t \geq 0 .
$$

4. A system has the transfer function:

$$
H(s)=\frac{10}{(s+7)(s+8)}
$$

a. Compute the system's response to the Dirac delta function (unit impulse) $\delta_{\mathrm{D}}(t)$.
b. Compute the system's response to the unit step function $\mu(t)$.
a. Because the Laplace transform of $\delta_{\mathrm{D}}(t)$ is 1 , the impulse response of a system is the inverse Laplace transform of its transfer function:

$$
\begin{aligned}
h(t) & =\mathfrak{L}^{-1}\{H(s)\}=\mathfrak{L}^{-1}\left\{\frac{10}{(s+7)(s+8)}\right\}=\mathfrak{L}^{-1}\left\{\frac{10}{s+7}-\frac{10}{s+8}\right\} \\
& =10 e^{-7 t}-10 e^{-8 t}, \quad t \geq 0
\end{aligned}
$$

b. The step response of this system is:

$$
\begin{aligned}
y(t) & =\mathfrak{L}^{-1}\{H(s) U(s)\}=\mathfrak{L}^{-1}\left\{\frac{10}{(s+7)(s+8)} \frac{1}{s}\right\}=\mathfrak{L}^{-1}\left\{\frac{\frac{10}{56}}{s}-\frac{\frac{80}{56}}{s+7}+\frac{\frac{5}{4}}{s+8}\right\} \\
& =\frac{10}{56}-\frac{80}{56} e^{-7 t}+\frac{5}{4} e^{-8 t}, \quad t \geq 0
\end{aligned}
$$

