Tables and Other Information

State-space model equations:

for continuous-time systems,

$$\frac{dx}{dt} = f(x(t), u(t), t) \tag{3.6.1}$$

$$y(t) = g(x(t), u(t), t)$$
 (3.6.2)

for discrete-time systems,

$$x[k+1] = f_d(x[k], u[k], k)$$
(3.6.3)

$$y[k] = g_d(x[k], u[k], k)$$
(3.6.4)

In the linear, time-invariant case, equations (3.6.1) and (3.6.2) become

$$\frac{dx(t)}{dt} = \mathbf{A}x(t) + \mathbf{B}u(t) \tag{3.6.5}$$

$$y(t) = \mathbf{C}x(t) + \mathbf{D}u(t) \tag{3.6.6}$$

where A, B, C, and D are matrices of appropriate dimensions.

Linearization of state-space models:

$$\dot{x}(t) = \mathbf{A}x(t) + \mathbf{B}u(t) + \mathbf{E} \tag{3.10.8}$$

$$y(t) = \mathbf{C}x(t) + \mathbf{D}u(t) + \mathbf{F} \tag{3.10.9}$$

where

$$\mathbf{A} = \frac{\partial f}{\partial x} \bigg|_{\substack{x = x_Q \\ u = u_Q}}; \qquad \mathbf{B} = \frac{\partial f}{\partial u} \bigg|_{\substack{x = x_Q \\ u = u_Q}}$$
(3.10.10)

$$\mathbf{C} = \frac{\partial g}{\partial x} \Big|_{\substack{x = x_Q \\ u = u_Q}}; \qquad \mathbf{D} = \frac{\partial g}{\partial u} \Big|_{\substack{x = x_Q \\ u = u_Q}}$$
(3.10.11)

$$\mathbf{E} = f(x_Q, u_Q) - \frac{\partial f}{\partial x} \Big|_{\substack{x = x_Q \\ u = u_Q}} x_Q - \frac{\partial f}{\partial u} \Big|_{\substack{x = x_Q \\ u = u_Q}} u_Q$$
 (3.10.12)

$$\mathbf{F} = g(x_Q, u_Q) - \frac{\partial g}{\partial x} \Big|_{\substack{x = x_Q \\ u = u_Q}} x_Q - \frac{\partial g}{\partial u} \Big|_{\substack{x = x_Q \\ u = u_Q}} u_Q$$
 (3.10.13)

Laplace-transform definition:

$$\mathcal{L}[y(t)] = Y(s) = \int_{0^{-}}^{\infty} e^{-st} y(t) dt$$
 (4.3.1)

$$\mathcal{L}^{-1}[y(s)] = y(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} e^{st} Y(s) ds$$
 (4.3.2)

Laplace-transform table:

$f(t) \qquad (t \ge 0)$	$\mathcal{L}\left[f(t) ight]$	Region of Convergence
1	$\frac{1}{s}$	$\sigma > 0$
$\delta_D(t)$	1	$ \sigma < \infty$
t	$\frac{1}{s^2}$	$\sigma > 0$
$t^n \qquad n \in \mathbb{Z}^+$	$\frac{n!}{s^{n+1}}$	$\sigma > 0$
$e^{\alpha t}$ $\alpha \in \mathbb{C}$	$\frac{1}{s-lpha}$	$\sigma > \Re\{\alpha\}$
$te^{\alpha t} \qquad \alpha \in \mathbb{C}$	$\frac{1}{(s-\alpha)^2}$	$\sigma > \Re\{\alpha\}$
$\cos(\omega_o t)$	$\frac{s}{s^2 + \omega_o^2}$	$\sigma > 0$
$\sin(\omega_o t)$	$rac{\omega_o}{s^2+\omega_o^2}$	$\sigma > 0$
$e^{\alpha t}\sin(\omega_o t + \beta)$	$\frac{(\sin \beta)s + \omega_o \cos \beta - \alpha \sin \beta}{(s - \alpha)^2 + \omega_o^2}$	$\sigma>\Re\{\alpha\}$
$t\sin(\omega_o t)$	$\frac{2\omega_o s}{(s^2 + \omega_o^2)^2}$	$\sigma > 0$
$t\cos(\omega_o t)$	$\frac{s^2 - \omega_o^2}{(s^2 + \omega_o^2)^2}$	$\sigma > 0$
$\mu(t) - \mu(t - \tau)$	$\frac{1 - e^{-s\tau}}{s}$	$ \sigma < \infty$

Table 4.1. Laplace-transform table

Laplace-transform properties:

f(t)	$\mathcal{L}\left[f(t) ight]$	Names
$\sum_{i=1}^{l} a_i f_i(t)$	$\sum_{i=1}^{l} a_i F_i(s)$	Linear combination
$\frac{dy(t)}{dt}$	$sY(s) - y(0^-)$	Derivative Law
$\frac{d^k y(t)}{dt^k}$	$\left s^{k}Y(s) - \sum_{i=1}^{k} s^{k-i} \frac{d^{i-1}y(t)}{dt^{i-1}} \right _{t=0}^{t}$	High-order derivative
$\int_{0^-}^t y(\tau)d\tau$	$\frac{1}{s}Y(s)$	Integral Law
$y(t-\tau)\mu(t-\tau)$	$e^{-s\tau}Y(s)$	Delay
ty(t)	$-\frac{dY(s)}{ds}$	
$t^k y(t)$	$(-1)^k \frac{d^k Y(s)}{ds^k}$	
$\int_{0^{-}}^{t} f_1(\tau) f_2(t-\tau) d\tau$	$F_1(s)F_2(s)$	Convolution
$\lim_{t \to \infty} y(t)$	$\lim_{s \to 0} sY(s)$	Final-Value Theorem
$\lim_{t \to 0^+} y(t)$	$\lim_{s\to\infty}sY(s)$	Initial Value Theorem
$f_1(t)f_2(t)$	$\frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F_1(\zeta) F_2(s - \zeta) d\zeta$	Time-domain product
$e^{at}f_1(t)$	$F_1(s-a)$	Frequency Shift

Table 4.2. Laplace-transform properties—note that $F_i(s) = \mathcal{L}\left[f_i(t)\right], \ Y(s) = \mathcal{L}\left[y(t)\right], \ k \in \{1,2,3,\dots\}, \ \text{and} \ f_1(t) = f_2(t) = 0 \quad \forall t < 0.$

Fourier-transform definition:

$$\mathcal{F}[f(t)] = F(j\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} f(t) dt \qquad (4.10.1)$$

$$\mathcal{F}^{-1}[F(j\omega)] = f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} F(j\omega) d\omega \qquad (4.10.2)$$

Fourier-transform table:

$f(t) \qquad \forall t \in \mathbb{R}$	$\mathcal{F}\left[f(t) ight]$
1	$2\pi\delta(\omega)$
$\delta_D(t)$	1
$\mu(t)$	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\mu(t) - \mu(t - t_o)$	$rac{1-e^{-j\omega t_o}}{j\omega}$
$e^{\alpha t}\mu(t) \qquad \Re\{\alpha\} < 0$	$rac{1}{j\omega-lpha}$
$te^{\alpha t}\mu(t) \qquad \Re\{\alpha\} < 0$	$\frac{1}{(j\omega-\alpha)^2}$
$e^{-\alpha t } \qquad \alpha \in \mathbb{R}^+$	$\frac{2\alpha}{\omega^2 + \alpha^2}$
$\cos(\omega_o t)$	$\pi \left(\delta(\omega - \omega_o) + \delta(\omega - \omega_o) \right)$
$\sin(\omega_o t)$	$j\pi \left(\delta(\omega+\omega_o)-\delta(\omega-\omega_o)\right)$
$\cos(\omega_o t)\mu(t)$	$\pi \left(\delta(\omega - \omega_o) + \delta(\omega - \omega_o)\right) + \frac{j\omega}{-\omega^2 + \omega_o^2}$
$\sin(\omega_o t)\mu(t)$	$j\pi \left(\delta(\omega + \omega_o) - \delta(\omega - \omega_o)\right) + \frac{\omega_o}{-\omega^2 + \omega_o^2}$
$e^{-\alpha t}\cos(\omega_o t)\mu(t) \qquad \alpha \in \mathbb{R}^+$	$\frac{j\omega + \alpha}{(j\omega + \alpha)^2 + \omega_o^2}$
$e^{-\alpha t}\sin(\omega_o t)\mu(t) \qquad \alpha \in \mathbb{R}^+$	$\frac{\omega_o}{(j\omega + \alpha)^2 + \omega_o^2}$

Table 4.3. Fourier transform table

Fourier-transform properties:

f(t)	$\mathcal{F}[f(t)]$	Description
$\sum_{i=1}^{l} a_i f_i(t)$	$\sum_{i=1}^{l} a_i F_i(j\omega)$	Linearity
$\frac{dy(t)}{dt}$	$j\omega Y(j\omega)$	Derivative law
$\frac{d^k y(t)}{dt^k}$	$(j\omega)^k Y(j\omega)$	High-order derivative
$\int_{-\infty}^{t} y(\tau) d\tau$	$\frac{1}{j\omega}Y(j\omega) + \pi Y(0)\delta(\omega)$	Integral law
y(t- au)	$e^{-j\omega au}Y(j\omega)$	Delay
y(at)	$\frac{1}{ a }Y\left(j\frac{\omega}{a}\right)$	Time scaling
y(-t)	$Y(-j\omega)$	Time reversal
$\int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) d\tau$	$F_1(j\omega)F_2(j\omega)$	Convolution
$y(t)\cos(\omega_o t)$	$\frac{1}{2} \left\{ Y(j\omega - j\omega_o) + Y(j\omega + j\omega_o) \right\}$	Modulation (cosine)
$y(t)\sin(\omega_o t)$	$\frac{1}{j2} \left\{ Y(j\omega - j\omega_o) - Y(j\omega + j\omega_o) \right\}$	Modulation (sine)
F(t)	$2\pi f(-j\omega)$	Symmetry
$f_1(t)f_2(t)$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(j\zeta) F_2(j\omega - j\zeta) d\zeta$	Time-domain product
$e^{at}f_1(t)$	$F_1(j\omega-a)$	Frequency shift

Table 4.4. Fourier transform properties; note that $F_i(j\omega)=\mathcal{F}[f_i(t)]$ and $Y(j\omega)=\mathcal{F}[y(t)]$

Nominal sensitivity equations:

$$T_{o}(s) \stackrel{\triangle}{=} \qquad \frac{G_{o}(s)C(s)}{1 + G_{o}(s)C(s)} = \frac{B_{o}(s)P(s)}{A_{o}(s)L(s) + B_{o}(s)P(s)}$$
(5.3.1)

$$S_{o}(s) \stackrel{\triangle}{=} \qquad \frac{1}{1 + G_{o}(s)C(s)} = \frac{A_{o}(s)L(s)}{A_{o}(s)L(s) + B_{o}(s)P(s)}$$
(5.3.2)

$$S_{io}(s) \stackrel{\triangle}{=} \qquad \frac{G_{o}(s)}{1 + G_{o}(s)C(s)} = \frac{B_{o}(s)L(s)}{A_{o}(s)L(s) + B_{o}(s)P(s)}$$
(5.3.3)

$$S_{uo}(s) \stackrel{\triangle}{=} \qquad \frac{C(s)}{1 + G_{o}(s)C(s)} = \frac{A_{o}(s)P(s)}{A_{o}(s)L(s) + B_{o}(s)P(s)}$$
(5.3.4)

$$S_o(s) \stackrel{\triangle}{=} \frac{1}{1 + G_o(s)C(s)} = \frac{A_o(s)L(s)}{A_o(s)L(s) + B_o(s)P(s)}$$
(5.3.2)

$$S_{io}(s) \stackrel{\triangle}{=} \frac{G_o(s)}{1 + G_o(s)C(s)} = \frac{B_o(s)L(s)}{A_o(s)L(s) + B_o(s)P(s)}$$
(5.3.3)

$$S_{uo}(s) \stackrel{\triangle}{=} \frac{C(s)}{1 + G_o(s)C(s)} = \frac{A_o(s)P(s)}{A_o(s)L(s) + B_o(s)P(s)}$$
 (5.3.4)

 $T_o(s)$: Nominal complementary sensitivity

 $S_o(s)$: Nominal sensitivity

 $S_{io}(s)$: Nominal input-disturbance sensitivity

 $S_{uo}(s)$: Nominal control sensitivity

The polynomial $A_{cl} \stackrel{\triangle}{=} A_o(s)L(s) + B_o(s)P(s)$ is called the nominal closed-loop characteristic polynomial.

$$S_o(s) + T_o(s) = 1 (5.3.5)$$

$$S_{io}(s) = S_o(s)G_o(s) = \frac{T_o(s)}{C(s)}$$
 (5.3.6)

$$S_{io}(s) = S_o(s)G_o(s) = \frac{T_o(s)}{C(s)}$$
 (5.3.6)
 $S_{uo}(s) = S_o(s)C(s) = \frac{T_o(s)}{G_o(s)}$ (5.3.7)

One-d.o.f. closed-loop system equations:

$$\begin{bmatrix} Y(s) \\ U(s) \end{bmatrix} = \frac{\begin{bmatrix} G_o(s)C(s) & G_o(s) & 1 & -G_o(s)C(s) \\ C(s) & -G_o(s)C(s) & -C(s) & -C(s) \end{bmatrix}}{1 + G_o(s)C(s)} \begin{bmatrix} R(s) \\ D_i(s) \\ D_o(s) \\ D_m(s) \end{bmatrix}$$

Two-d.o.f. closed-loop system equations:

$$\begin{bmatrix} Y_o(s) \\ U_o(s) \end{bmatrix} = \frac{\begin{bmatrix} G_o(s)C(s) & G_o(s) & 1 & -G_o(s)C(s) \\ C(s) & -G_o(s)C(s) & -C(s) & -C(s) \end{bmatrix}}{1 + G_o(s)C(s)} \begin{bmatrix} H(s)R(s) \\ D_i(s) \\ D_o(s) \\ D_m(s) \end{bmatrix}$$
(5.3.12)

Routh's array:

Table 5.1. Routh's array

where

$$\gamma_{0,i} = a_{n+2-2i}; \quad i = 1, 2, \dots, m_0 \quad \text{and} \quad \gamma_{1,i} = a_{n+1-2i}; \quad i = 1, 2, \dots, m_1$$
(5.5.9)

with $m_0 = (n+2)/2$ and $m_1 = m_0 - 1$ for n even and $m_1 = m_0$ for n odd. Note that the elements $\gamma_{0,i}$ and $\gamma_{1,i}$ are the coefficients of the polynomials arranged in alternated form.

Furthermore,

$$\gamma_{k,j} = \frac{\gamma_{k-1,1} \gamma_{k-2,j+1} - \gamma_{k-2,1} \gamma_{k-1,j+1}}{\gamma_{k-1,1}} ; \qquad k = 2, \dots, n \qquad j = 1, 2, \dots, m_j$$
(5.5.10)

where $m_j = \max\{m_{j-1}, m_{j-2}\} - 1$ and where we must assign a zero value to the coefficient $\gamma_{k-1,j+1}$ when it is not defined in the Routh's array given in Table 5.1.

Note that the definitions of coefficients in (5.5.10) can be expressed by using determinants:

$$\gamma_{k,j} = -\frac{1}{\gamma_{k-1,1}} \begin{vmatrix} \gamma_{k-2,1} & \gamma_{k-2,j+1} \\ \gamma_{k-1,1} & \gamma_{k-1,j+1} \end{vmatrix}$$
 (5.5.11)

Robust stability theorm:

Theorem 5.3 (Robust stability theorem). Consider a plant with nominal transfer function $G_o(s)$ and true transfer function given by G(s). Assume that C(s) is the transfer function of a controller that achieves nominal internal stability. Also assume that G(s)C(s) and $G_o(s)C(s)$ have the same number of unstable poles. Then, a sufficient condition for stability of the true feedback loop obtained by applying the controller to the true plant is that

$$|T_o(j\omega)||G_{\Delta}(j\omega)| = \left| \frac{G_o(j\omega)C(j\omega)}{1 + G_o(j\omega)C(j\omega)} \right| |G_{\Delta}(j\omega)| < 1 \qquad \forall \omega \qquad (5.9.6)$$

where $G_{\Delta}(j\omega)$ is the frequency response of the multiplicative modeling error (MME).

Achieved sensitivity equations:

$$T(s) \stackrel{\triangle}{=} \qquad \qquad \frac{G(s)C(s)}{1+G(s)C(s)} = \frac{B(s)P(s)}{A(s)L(s)+B(s)P(s)} \tag{5.9.1}$$

$$S(s) \stackrel{\triangle}{=} \frac{1 + G(s)C(s)}{1 + G(s)C(s)} = \frac{A(s)L(s) + B(s)P(s)}{A(s)L(s) + B(s)P(s)}$$

$$S_{i}(s) \stackrel{\triangle}{=} \frac{G(s)}{1 + G(s)C(s)} = \frac{B(s)L(s)}{A(s)L(s) + B(s)P(s)}$$

$$(5.9.2)$$

$$S_i(s) \stackrel{\triangle}{=} \frac{G(s)}{1 + G(s)C(s)} = \frac{B(s)L(s)}{A(s)L(s) + B(s)P(s)}$$
 (5.9.3)

$$S_u(s) \stackrel{\triangle}{=} \frac{C(s)}{1 + G(s)C(s)} = \frac{A(s)P(s)}{A(s)L(s) + B(s)P(s)}$$
(5.9.4)

$$S(s) = S_o(s)S_{\Delta}(s) \tag{5.9.15}$$

$$T(s) = T_o(s)(1 + G_{\Delta}(s))S_{\Delta}(s)$$
 (5.9.16)

$$S_i(s) = S_{io}(s)(1 + G_{\Delta}(s))S_{\Delta}(s)$$
 (5.9.17)

$$S_u(s) = S_{uo}(s)S_{\Delta}(s) \tag{5.9.18}$$

$$S_{\Delta}(s) = \frac{1}{1 + T_o(s)G_{\Delta}(s)}$$
 (5.9.19)

 $S_{\Delta}(s)$ is called the error sensitivity.

PID standard form equations:

$$C_P(s) = K_p (6.2.1)$$

$$C_{PI}(s) = K_p \left(1 + \frac{1}{T_r s} \right)$$

$$C_{PD}(s) = K_p \left(1 + \frac{T_d s}{\tau_D s + 1} \right)$$

$$(6.2.2)$$

$$C_{PD}(s) = K_p \left(1 + \frac{T_d s}{\tau_D s + 1} \right)$$
 (6.2.3)

$$C_{PID}(s) = K_p \left(1 + \frac{1}{T_r s} + \frac{T_d s}{\tau_D s + 1} \right)$$
 (6.2.4)

Ziegler-Nichols oscillation-method parameters:

	$\mathbf{K}_{\mathbf{p}}$	$\mathbf{T_r}$	$T_{ m d}$
P	$0.50K_{c}$		
PI	$0.45K_{c}$	$\frac{P_c}{1.2}$	
PID	$0.60K_{c}$	$0.5P_c$	$\frac{P_c}{8}$

Table 6.1. Ziegler-Nichols tuning, using the oscillation method

Ziegler-Nichols reaction curve parameters:

	K_{p}	${f T_r}$	$\mathrm{T_{d}}$
P	$\frac{\nu_o}{K_o \tau_o}$		
PI	$\frac{0.9\nu_o}{K_o\tau_o}$	$3\tau_o$	
PID	$\frac{1.2\nu_o}{K_o\tau_o}$	$2\tau_o$	$0.5\tau_o$

Table 6.2. Ziegler-Nichols tuning by using the reaction curve

Cohen-Coon reaction curve parameters:

	K_{p}	${f T_r}$	${f T_d}$
P	$\frac{\nu_o}{K_o \tau_o} \left[1 + \frac{\tau_o}{3\nu_o} \right]$		
PI	$\frac{\nu_o}{K_o \tau_o} \left[0.9 + \frac{\tau_o}{12\nu_o} \right]$	$\frac{\tau_o[30\nu_o + 3\tau_o]}{9\nu_o + 20\tau_o}$	
PID	$\frac{\nu_o}{K_o \tau_o} \left[\frac{4}{3} + \frac{\tau_o}{4\nu_o} \right]$	$\frac{\tau_o[32\nu_o + 6\tau_o]}{13\nu_o + 8\tau_o}$	$\frac{4\tau_o\nu_o}{11\nu_o + 2\tau_o}$

Table 6.3. Cohen-Coon tuning by using the reaction curve

Lead-lag compensator equation:

$$C(s) = \frac{\tau_1 s + 1}{\tau_2 s + 1} \tag{6.6.1}$$

Pole placement equations and Lemma:

$$C(s) = \frac{P(s)}{L(s)}$$
 $G_o(s) = \frac{B_o(s)}{A_o(s)}$ (7.2.2)

$$P(s) = p_{n_p} s^{n_p} + p_{n_p - 1} s^{n_p - 1} + \dots + p_0$$
 (7.2.3)

$$L(s) = l_{n_l} s^{n_l} + l_{n_l - 1} s^{n_l - 1} + \dots + l_0$$
(7.2.4)

$$B_o(s) = b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_0$$
 (7.2.5)

$$A_o(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_0$$
(7.2.6)

$$A_{cl}(s) = a_{n_c}^c s^{n_c} + a_{n_c-1}^c s^{n_c-1} + \dots + a_0^c$$
 (7.2.7)

Lemma 7.1 (SISO pole placement–polynomial approach). Consider a one-d.o.f. feedback loop with controller and plant nominal model given by (7.2.2) to (7.2.6). Assume that $B_o(s)$ and $A_o(s)$ are relatively prime (coprime)–i.e., they have no common factors. Let $A_{cl}(s)$ be an arbitrary polynomial of degree $n_c = 2n - 1$. Then there exist polynomials P(s) and L(s), with degrees $n_p = n_l = n - 1$, such that

$$A_o(s)L(s) + B_o(s)P(s) = A_{cl}(s)$$
 (7.2.19)

Time-domain integral constraints:

Lemma 8.1. We assume that the plant is controlled in a one-degree-of-freedom configuration and that the open-loop plant and controller satisfy:

$$A_o(s)L(s) = s^i(A_o(s)L(s))'$$
 $i \ge 1$ (8.6.8)

$$\lim_{s \to 0} (A_o(s)L(s))' = c_0 \neq 0 \tag{8.6.9}$$

$$\lim_{s \to 0} (B_o(s)P(s)) = c_1 \neq 0 \tag{8.6.10}$$

that is, that the plant-controller combination has i poles at the origin. Then, for a step-output disturbance or step set-point, the control error, e(t), satisfies

$$\lim_{t \to \infty} e(t) = 0 \qquad \forall i \ge 1$$
 (8.6.11)

$$\int_{0}^{\infty} e(t)dt = 0 \qquad \forall i \ge 2$$
 (8.6.12)

Also, for a negative unit ramp output disturbance or a positive unit ramp reference, the control error, e(t), satisfies

$$\lim_{t \to \infty} e(t) = \frac{c_0}{c_1} \qquad for \quad i = 1$$
 (8.6.13)

$$\lim_{t \to \infty} e(t) = 0 \qquad \forall i \ge 2 \tag{8.6.14}$$

$$\int_{0}^{\infty} e(t)dt = 0 \qquad \forall i \ge 3$$
(8.6.15)

Time-domain integral constraints (cont.):

Lemma 8.2. Assume that the controller satisfies:

$$L(s) = s^{i}(L(s))'$$
 $i \ge 1$ (8.6.17)

$$\lim_{s \to 0} (L(s))' = l_i \neq 0 \tag{8.6.18}$$

$$\lim_{s \to 0} (P(s)) = p_0 \neq 0 \tag{8.6.19}$$

The controller alone has i poles at the origin. Then, for a step input disturbance, the control error, e(t), satisfies

$$\lim_{t \to \infty} e(t) = 0 \qquad \forall i \ge 1$$
 (8.6.20)

$$\int_{0}^{\infty} e(t)dt = 0 \qquad \forall i \ge 2$$
(8.6.21)

Also, for a negative unit ramp input disturbance, the control error, e(t), satisfies

$$\lim_{t \to \infty} e(t) = \frac{l_i}{p_0} \qquad \text{for} \qquad i = 1$$
 (8.6.22)

$$\lim_{t \to \infty} e(t) = 0 \qquad \forall i \ge 2 \tag{8.6.23}$$

$$\int_{0}^{\infty} e(t)dt = 0 \qquad \forall i \ge 3$$
(8.6.24)

Time-domain integral constraints (cont.):

Lemma 8.3. Consider a feedback control loop having stable closed-loop poles located to the left of $-\alpha$ for some $\alpha > 0$. Also assume that the controller has at least one pole at the origin. Then, for an uncancelled plant zero z_0 or an uncancelled plant pole η_0 to the right of the closed-loop poles-i.e., satisfying $\Re\{z_0\} > -\alpha$ or $\Re\{\eta_0\} > -\alpha$, respectively—we have the following:

(i) For a positive unit reference step or a negative unit-step output disturbance, we have

$$\int_{0}^{\infty} e(t)e^{-z_0t}dt = \frac{1}{z_0}$$
(8.6.26)

$$\int_{0}^{\infty} e(t)e^{-\eta_0 t}dt = 0 \tag{8.6.27}$$

(ii) For a positive unit step reference and for z_0 in the right-half plane, we have

$$\int_{0}^{\infty} y(t)e^{-z_0t}dt = 0 (8.6.28)$$

(iii) For a negative unit step input disturbance, we have

$$\int_{-\infty}^{\infty} e(t)e^{-z_0t}dt = 0 (8.6.29)$$

$$\int_{0}^{\infty} e(t)e^{-\eta_{0}t}dt = \frac{L(\eta_{0})}{\eta_{0}P(\eta_{0})}$$
(8.6.30)

Corollary 8.1. Consider a closed-loop system, as in Lemma 8.3 on page 213. Then, for a unit step reference input,

(a) if the plant G(s) has a pair of zeros at $\pm j\omega_0$, then

$$\int_0^\infty e(t)\cos\omega_0 t dt = 0 \tag{8.6.39}$$

$$\int_0^\infty e(t)\sin\omega_0 t dt = \frac{1}{\omega_0} \tag{8.6.40}$$

(b) if the plant G(s) has a pair of poles at $\pm j\omega_0$, then

$$\int_0^\infty e(t)\cos\omega_0 t dt = 0 \tag{8.6.41}$$

$$\int_0^\infty e(t)\sin\omega_0 t dt = 0 \tag{8.6.42}$$

where e(t) is the control error, i.e.,

$$e(t) = 1 - y(t) \tag{8.6.43}$$

Z-transform definition:

$$\mathcal{Z}[y[k]] = Y(z) = \sum_{k=0}^{\infty} z^{-k} y[k]$$

$$\mathcal{Z}^{-1}[Y(z)] = y[k] = \frac{1}{2\pi j} \oint z^{k-1} Y(z) dz$$
(12.6.2)

$$\mathcal{Z}^{-1}[Y(z)] = y[k] = \frac{1}{2\pi j} \oint z^{k-1} Y(z) dz$$
 (12.6.2)

Z-transform table:

f[k]	$\mathcal{Z}\left[f[k] ight]$	Region of convergence
1	$\frac{z}{z-1}$	z > 1
$\delta_K[k]$	1	z > 0
k	$\frac{z}{(z-1)^2}$	z > 1
k^2	$\frac{z(z+1)}{(z-1)^3}$	z > 1
a^k	$\frac{z}{z-a}$	z > a
ka^k	$\frac{az}{(z-a)^2}$	z > a
$\cos k\theta$	$\frac{z(z-\cos\theta)}{z^2-2z\cos\theta+1}$	z > 1
$\sin k\theta$	$\frac{z\sin\theta}{z^2 - 2z\cos\theta + 1}$	z > 1
$a^k \cos k\theta$	$\frac{z(z - a\cos\theta)}{z^2 - 2az\cos\theta + a^2}$	z > a
$a^k \sin k\theta$	$\frac{az\sin\theta)}{z^2 - 2az\cos\theta + a^2}$	z > a
$k\cos k\theta$	$\frac{z(z^2\cos\theta - 2z + \cos\theta)}{z^2 - 2z\cos\theta + 1}$	z > 1
$\mu[k] - \mu[k - k_o], k_o \in \mathbb{N}$	$\frac{1 + z + z^2 + \ldots + z^{k_o - 1}}{z^{k_o - 1}}$	z > 0

Table 12.1. Z-transform table

Z-transform properties:

f[k]	$\mathcal{Z}\left[f[k] ight]$	Names
$\sum_{i=1}^{l} a_i f_i[k]$	$\sum_{i=1}^{l} a_i F_i(z)$	Partial fractions
f[k+1]	zF(z) - zf(0)	Forward shift
$\sum_{l=0}^{k} f[l]$	$\frac{z}{z-1}F(z)$	Summation
f[k-1]	$z^{-1}F(z) + f(-1)$	Backward shift
$y[k-l]\mu[k-l]$	$z^{-l}Y(z)$	Unit step
kf[k]	$-z\frac{dF(z)}{dz}$	20
$\frac{1}{k}f[k]$	$\int_{z}^{\infty} \frac{F(\zeta)}{\zeta} d\zeta$	
$\lim_{k \to \infty} y[k]$	$\lim_{z \to 1} (z - 1)Y(z)$	Final-value theorem
$\lim_{k \to 0} y[k]$	$\lim_{z \to \infty} Y(z)$	Initial value theorem
	$F_1(z)F_2(z)$	Convolution
$f_1[k]f_2[k]$	$\frac{1}{2\pi j} \oint F_1(\zeta) F_2\left(\frac{z}{\zeta}\right) \frac{d\zeta}{\zeta}$	Complex convolution
$(\lambda)^k f_1[k]$	$F_1\left(\frac{z}{\lambda}\right)$	Frequency scaling

Table 12.2. Z-transform properties. Note that $F_i(z) = \mathcal{Z}[f_i[k]]$, that $\mu[k]$ denotes, as usual, a unit step, that $y[\infty]$ must be well defined, and that the convolution property holds (provided that $f_1[k] = f_2[k] = 0$ for all k < 0).

Discrete delta-transform definition:

$$\mathcal{D}\left[y(k\Delta)\right] \stackrel{\triangle}{=} Y_{\delta}(\gamma) = \sum_{k=0}^{\infty} (1 + \gamma \Delta)^{-k} y(k\Delta) \Delta$$

$$\mathcal{D}^{-1}\left[Y_{\delta}(\gamma)\right] = y(k\Delta) = \frac{1}{2\pi j} \oint (1 + \gamma \Delta)^{k-1} Y_{\delta}(\gamma) d\gamma$$
(12.9.6)

$$\mathcal{D}^{-1}\left[Y_{\delta}(\gamma)\right] = y(k\Delta) = \frac{1}{2\pi j} \oint (1 + \gamma \Delta)^{k-1} Y_{\delta}(\gamma) d\gamma \tag{12.9.6}$$

Discrete delta-transform table:

$f[k] \qquad (k \ge 0)$	$\mathcal{D}\left[f[k] ight]$	Region of Convergence
1	$\frac{1+\Delta\gamma}{\gamma}$	$\left \gamma + \frac{1}{\Delta}\right > \frac{1}{\Delta}$
$rac{1}{\Delta}\delta_K[k]$	1	$ \gamma < \infty$
$\mu[k] - \mu[k-1]$	$\frac{1}{\Delta}$	$ \gamma < \infty$
k	$\frac{1+\Delta\gamma}{\Delta\gamma^2}$	$\left \gamma + \frac{1}{\Delta}\right > \frac{1}{\Delta}$
k^2	$\frac{(1+\Delta\gamma)(2+\Delta\gamma)}{\Delta^2\gamma^3}$	$\left \gamma + \frac{1}{\Delta}\right > \frac{1}{\Delta}$
$e^{\alpha \Delta k} \qquad \alpha \in \mathbb{C}$	$\frac{1 + \Delta \gamma}{\gamma - \frac{e^{\alpha \Delta} - 1}{\Delta}}$	$\left \gamma + \frac{1}{\Delta}\right > \frac{e^{\alpha \Delta}}{\Delta}$
$ke^{\alpha\Delta k}$ $\alpha\in\mathbb{C}$	$\frac{(1+\Delta\gamma)e^{\alpha\Delta}}{\Delta\left(\gamma-\frac{e^{\alpha\Delta}-1}{\Delta}\right)^2}$	$\left \gamma + \frac{1}{\Delta}\right > \frac{e^{\alpha \Delta}}{\Delta}$
$\sin(\omega_o \Delta k)$	$\frac{(1 + \Delta \gamma)\omega_o \operatorname{sinc}(\omega_o \Delta)}{\gamma^2 + \Delta \phi(\omega_o, \Delta)\gamma + \phi(\omega_o, \Delta)}$	$\left \gamma + \frac{1}{\Delta}\right > \frac{1}{\Delta}$
-	where $\operatorname{sinc}(\omega_o \Delta) = \frac{\sin(\omega_o \Delta)}{\omega_o \Delta}$	7
	and $\phi(\omega_o, \Delta) = \frac{2(1 - \cos(\omega_o \Delta))}{\Delta^2}$	
$\cos(\omega_o \Delta k)$	$\frac{(1 + \Delta \gamma)(\gamma + 0.5\Delta \phi(\omega_o, \Delta))}{\gamma^2 + \Delta \phi(\omega_o, \Delta)\gamma + \phi(\omega_o, \Delta)}$	$\left \gamma + \frac{1}{\Delta}\right > \frac{1}{\Delta}$

Table 12.3. Delta-Transform table

Discrete delta-transform properties:

f[k]	$\mathcal{D}\left[f[k] ight]$	Names
$\sum_{i=1}^{l} a_i f_i[k]$	$\sum_{i=1}^{l} a_i F_i(\gamma)$	Partial fractions
$f_1[k+1]$	$(\Delta \gamma + 1)(F_1(\gamma) - f_1[0])$	Forward shift
$\frac{f_1[k+1] - f_1[k]}{\Delta}$	$\gamma F_1(\gamma) - (1 + \gamma \Delta) f_1[0]$	Scaled difference
$\sum_{l=0}^{k-1} f[l] \Delta$	$rac{1}{\gamma}F(\gamma)$	Reimann sum
f[k-1]	$(1+\gamma\Delta)^{-1}F(\gamma)+f[-1]$	Backward shift
$f[k-l]\mu[k-l]$	$(1+\gamma\Delta)^{-l}F(\gamma)$	
kf[k]	$-\frac{1+\gamma\Delta}{\Delta}\frac{dF(\gamma)}{d\gamma}$	
$\frac{1}{k}f[k]$	$\int_{\gamma}^{\infty} \frac{F(\zeta)}{1+\zeta\Delta} d\zeta$	
$\lim_{k \to \infty} f[k]$	$\lim_{\gamma o 0} \gamma F(\gamma)$	Final-value theorem
$\lim_{k \to 0} f[k]$	$\lim_{\gamma \to \infty} \frac{\gamma F(\gamma)}{1 + \gamma \Delta}$	Initial value theorem
$ \sum_{l=0}^{k-1} f_1[l] f_2[k-l] \Delta $	$F_1(\gamma)F_2(\gamma)$	Convolution
$f_1[k]f_2[k]$	$\frac{1}{2\pi j} \oint F_1(\zeta) F_2\left(\frac{\gamma - \zeta}{1 + \zeta \Delta}\right) \frac{d\zeta}{1 + \zeta \Delta}$	Complex convolution
$(1+a\Delta)^k f_1[k]$	$F_1\left(\frac{\gamma-a}{1+a\Delta}\right)$	

Table 12.4. Delta-Transform properties. Note that $F_i(\gamma) = \mathcal{D}[f_i[k]]$, that $\mu[k]$ denotes, as usual, a unit step, that $f[\infty]$ must be well defined, and that the convolution property holds (provided that $f_1[k] = f_2[k] = 0$ for all k < 0).

Discrete-time equivalent model with ZOH:

$$H_{oq}(z) = \mathcal{Z}$$
 [the sampled impulse response of $G_{h0}(s)G_o(s)$] (12.13.3)
= $(1 - z^{-1})\mathcal{Z}$ [the sampled step response of $G_o(s)$] (12.13.4)

"Approximate continuous" digital controller—direct:

$$\overline{C}_1(\gamma) = C(s)\big|_{s=\gamma} \tag{13.5.1}$$

"Approximate continuous" digital controller—step invariant:

$$\overline{C}_2(\gamma) = \mathcal{D}$$
 [sampled impulse response of $\{C(s)G_{h0}(s)\}\]$ (13.5.2)

"Approximate continuous" digital controller—bilinear transformation:

$$\overline{C}_3(\gamma) = C(s)|_{s = \frac{\alpha\gamma}{\frac{\Delta}{2}\gamma + 1}}$$
 (13.5.4)

"Minimal prototype" digital controller—strictly stable and minimum-phase plant:

$$C_q(z) = [G_{oq}(z)]^{-1} \frac{1}{z^{n-m} - 1};$$
 and $T_o(z) = \frac{1}{z^{n-m}}$ (13.6.10)

"Minimal prototype" digital controller—pole at z = 1:

The plant is assumed to be of minimum phase and stable, except for a pole at z = 1, i.e., $A_{oq}(z) = (z - 1)\overline{A}_{oq}(z)$.

$$C_q(z) = [G_{oq}(z)]^{-1} \frac{1}{z^{n-m} - 1} = \frac{\overline{A}_{oq}(z)}{B_{oq}(z)} \frac{z - 1}{z^{n-m} - 1}$$
(13.6.17)

$$= \frac{\overline{A}_{oq}(z)}{B_{oq}(z)(z^{n-m-1} + z^{n-m-2} + z^{n-m-3} + \dots + z + 1)}$$
 (13.6.18)

$$T_{oq}(z) = \frac{1}{z^{n-m}} \tag{13.6.19}$$

"Minimum-time dead-beat" digital controller:

$$\alpha = \frac{1}{B_{oq}(1)} \tag{13.6.30}$$

$$C_q(z) = \frac{\alpha A_{oq}(z)}{z^n - \alpha B_{oq}(z)}$$
 (13.6.32)