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Chapter 7

Synthesis of SISO Controllers
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Pole Assignment
In the previous chapter, we examined PID control.
However, the tuning methods we used were essentially
ad-hoc.  Here we begin to look at more formal methods
for control system design.  In particular, we examine
the following key synthesis question:

Given a model, can one systematically synthesize
a controller such that the closed loop poles are
in predefined locations?

This chapter will show that this is indeed possible. We
call this pole assignment, which is a fundamental idea
in control synthesis.
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Polynomial Approach

In the nominal control loop, let the controller and
nominal model transfer functions be respectively given
by:

with

C(s) =
P (s)
L(s)

Go(s) =
Bo(s)
Ao(s)

P (s) = pnpsnp + pnp−1s
np−1 + . . . + p0

L(s) = lnl
snl + lnl−1s

nl−1 + . . . + l0

Bo(s) = bn−1s
n−1 + bn−2s

n−2 + . . . + b0

Ao(s) = ansn + an−1s
n−1 + . . . + a0
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Consider now a desired closed loop polynomial
given by

Acl(s) = ac
nc

snc + ac
nc−1s

nc−1 + . . . + ac
0
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Goal

Our objective here will be to see if, for given values
of  B0  and  A0,  P  and  L  can be designed so that the
closed loop characteristic polynomial is Acl(s).

We will see that, under quite general conditions, this
is indeed possible.

Before delving into the general theory, we first
examine a simple problem to illustrate the ideas.
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Example 7.1
Let G0(s) = B0(s)/A0(s) be the nominal model of a plant
with A0(s) = s2 + 3s + 2, B0(s) = 1 and consider a
controller of the form:

We see that the closed loop characteristic polynomial
satisfies:

 A0(s)L(s) + B0(s)P(s) = (s2 + 3s + 2) (l1s + l0) + (p1s +p0)

Say that we would like this to be equal to a polynomial
s3 + 3s2 + 3s + 1, then equating coefficients gives:

C(s) =
P (s)
L(s)

; P (s) = p1s + p0; L(s) = l1s + l0
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It is readily verified that the  4 × 4  matrix above is
nonsingular, meaning that we can solve for l1, l0, p1
and p0 leading to l1 = 1, l0 = 0, p1 = 1  and  p0 = 1.
Hence the desired characteristic polynomial is
achieved using the controller  C(s) = (s + 1)/s.

∇∇∇
We next turn to the general case.  We first note the
following mathematical result.




1 0 0 0
3 1 0 0
2 3 1 0
0 2 0 1







l1
l0
p1

p0


 =




1
3
3
1






©Goodwin, Graebe, Salgado, Prentice Hall 2000
Chapter7

Sylvester’s Theorem
Consider two polynomials

Together with the following eliminant matrix:

Then A(s) and B(s) are relatively prime (coprime) if
and only if  det(Me) ≠ 0.

A(s) = ansn + an−1s
n−1 + . . . + a0

B(s) = bnsn + bn−1s
n−1 + . . . + b0

Me =




an 0 · · · 0 bn 0 · · · 0
an−1 an · · · 0 bn−1 bn · · · 0

...
...

. . .
...

...
...

. . .
...

a0 a1 · · · an b0 b1 · · · bn

0 a0 · · · an−1 0 b0 · · · bn−1

...
...

. . .
...

...
...

. . .
...

0 0 · · · a0 0 0 · · · a0




ibruce
b
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Application of Sylvester’s Theorem

We will next use the above theorem to show how
closed loop pole-assignment is possible for general
linear single-input single-output systems.
In particular, we have the following result:
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Lemma 7.1:  (SISO pole placement.  Polynomial
approach).  Consider a one d.o.f. feedback loop with
controller and plant nominal model given by (7.2.2) to
(7.2.6).  Assume that  B0(s) and A0(s) are relatively
prime (coprime), i.e. they have no common factors.
Let  Acl(s) be an arbitrary polynomial of degree  nc =
2n - 1.  Then there exist polynomials P(s) and L(s),
with degrees np = nl = n - 1 such that

Ao(s)L(s) + Bo(s)P (s) = Acl(s)
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The above result shows that, in very general
situations, pole assignment can be achieved.
We next study some special cases where additional
constraints are placed on the solutions obtained.
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Constraining the Solution

Forcing integration in the loop:  A standard
requirement in control system design is that, in
steady state, the nominal control loop should yield
zero tracking error due to D.C. components in either
the reference, input disturbance or output
disturbance.  For this to be achieved, a necessary and
sufficient condition is that the nominal loop be
internally stable and that the controller have, at least,
one pole at the origin.  This will render the
appropriate sensitivity functions zero at zero
frequency.
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To achieve this we choose

The closed loop equation can then be rewritten as

L(s) = sL̄(s)

Āo(s)L̄(s) + Bo(s)P (s) = Acl(s) with Āo(s)
�
= sAo(s)
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