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Structural Limitations

The above analysis of limitations has focussed on issues
arising from the actuators, sensors and model accuracy.
However, there is another source of errors arising from
the nature of the plant.  Specifically we have:
General Ideas:  Performance in the nominal linear
control loop is also subject to unavoidable constraints
which derive from the particular structure of the nominal
model itself.  We discuss:

◆ delays
◆ open loop zeros
◆ open loop poles
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Delays

Undoubtedly the most common source of structural
limitation in process control applications is due to
process delays.  These delays are typically associated
with the transportation of materials from one point to
another.  We have seen in Chapter 7, that the output
sensitivity can, at best, be given by:

Where  τ  is the delay.
To achieve this ideal result requires use of a Smith
Predictor plus ideal controller.

S∗
o (s) = 1 − e−sτ
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If we were to achieve the idealized result, then the
corresponding nominal complementary sensitivity
would be

This has gain 1 at all frequencies.  Hence high
frequency model errors will lead to instability unless
the bandwidth is limited.  Errors in the delay are
particularly troublesome.  We thus conclude:

T ∗
o (s) = e−sτ
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(i) Delays limit disturbance rejection by requiring that a
delay occur before the disturbance can be cancelled.  
This is reflected in the ideal sensitivity   S0

*(s);

(ii) Delays further limit the achievable bandwidth due to 
the impact of model errors.
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An interesting question which arises in this context is whether
it is worthwhile using a Smith Predictor in practice.
The answer is probably yes if the system model (especially
the delay) are accurately known.  However, if the delay is
poorly known, then robustness considerations limit the
achievable bandwidth even if a Smith Predictor is used.
Specifically, if the delay is known to say η ∗ 100%, then the
bandwidth is limited to the order of 1/ητ  .  Say η =1/3, then this
gives a bandwidth of approximately 3/τ.  On the other hand, a
simple PID controller can probably achieve a bandwidth of
4/τ.  Thus, one can see that accurate knowledge of the system
model and delay is a precursor to gaining advantages from
using a Smith Predictor.
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Example 8.3:  Thickness control in rolling mills

We recall the example of thickness control in rolling mills as
mentioned in Chapter 1  (see next slide for photo).  A schematic
diagram for one stand of a rolling mill is given in Figure 8.3.
In Figure 8.3 we have used the following symbols:

F - Roll Force  σ  - unloaded roll gap
H - input thickness V - input velocity
h - exit thickness),  v - exit velocity
hm - measured exit thickness,
d - distance from mill to exit thickness measurement.

The distance from the mill to output thickness measurement
introduces a (speed dependent) time delay of  (d/v).  This
introduces a fundamental limit to the controlled performances as
described above.
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A modern rolling mill
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Figure 8.3:  Rolling mill thickness control
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Open Loop Poles and Zeros

We next study the effect of open loop poles and
zeros on achievable performance.  We shall see that
open loop poles and zeros have a dramatic (and
predictable) effect on closed loop performance.

We begin by examining the so-called interpolation
constraints which show how open loop poles and
zeros are reflected in the poles and zeros of the
various closed loop sensitivity functions.
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Interpolation Constraints
We recall that the relevant nominal sensitivity
functions for a nominal plant
and a given unity feedback controller
are given below
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Observations:
(i) The nominal complementary sensitivity T0(s) has a zero

at all uncancelled zeros of  G0(s).

(ii) The nominal sensitivity S0(s) is equal to one at all
uncancelled zeros of G0(s).  (This follows from (i) using
the identity S0(s) + T0(s) = 1).

(iii) The nominal sensitivity S0(s) has a zero at all
uncancelled poles of G0(s).

(iv) The nominal complementary sensitivity T0(s) is equal to
one at all uncancelled poles of  G0(s).  (This follows
from (iii) and the identity  S0(s) + T0(s) = 1).
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We next show how these interpolation constraints
lead to performance limits.
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Effect of Open Loop Integrators
Lemma 8.1:  We assume that the plant is controlled in a
one-degree-of-freedom configuration and that the open loop
plant and controller satisfy:

i.e., the plant-controller combination has  i  poles at the
origin.  Then, for a step output disturbance or step set point,
the control error, e(t) satisfies

Ao(s)L(s) = si(Ao(s)L(s))′ i ≥ 1
lim
s→0

(Ao(s)L(s))′ = c0 �= 0

lim
s→0

(Bo(s)P (s)) = c1 �= 0

lim
t→∞ e(t) = 0 ∀i ≥ 1
∞∫

0

e(t)dt = 0 ∀i ≥ 2
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Also, for a negative unit ramp output disturbance or
a positive unit ramp reference, the control error, e(t),
satisfies

lim
t→∞ e(t) =

c0

c1
for i = 1

lim
t→∞ e(t) = 0 ∀i ≥ 2

∞∫

0

e(t)dt = 0 ∀i ≥ 3
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Equal Area Result
CG contains double integrator

S has double zero at  s = 0
Hence
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The above conclusion holds for a one-degree-of-
freedom feedback control system.  Later in these
slides we show that overshoot  can actually be
avoided if the architecture is changed to a two-
degree-of-freedom control system.
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Consequences
Say that we want to eliminate the effect of ramp input
disturbances in steady state.  This can be achieved by
placing 2 integrators in the controller.  However, we
then see that the error to a step reference change must
satisfy

This, in turn, implies that the error must change sign, i.e.
overshoot must occur.
Thus it is impossible to have zero steady state error to
ramp type input disturbances together with no overshoot
to a step reference.

�
∞ =0 0)( dtte
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