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The current chapter is principally concerned with
modelling issues, i.e. how to relate samples of the
output of a physical system to the sampled data
input.
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Specific topics to be covered are:

◆ Discrete-time signals
◆ Z-transforms and Delta transforms
◆ Sampling and reconstruction
◆ Aliasing and anti-aliasing filters
◆ Sampled-data control systems
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Sampling

The result of sampling a continuous time signal is
shown below:
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Figure 12.10:  The result of sampling
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There will always be loss of information due to
sampling. However, the extent of this loss depends
on the sampling method and the associated
parameters. For example, assume that a sequence of
samples is taken of a signal f(t) every ∆ seconds,
then the sampling frequency needs to be large
enough in comparison with the maximum rate of
change of f(t).  Otherwise, high frequency
components will be mistakenly interpreted as low
frequencies in the samples sequence.
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Example 12.1

Consider the signal

We observe that if the sampling period  ∆  is chosen equal
to 0.1[s] then

from where it is evident that the high frequency
component has been shifted to a constant, i.e. the high
frequency component appears as a signal of low frequency
(here zero).  This phenomenon is known as aliasing.

f(t) = 3 cos 2πt+ cos
(
20πt+

π

3

)

f(k∆) = 3 cos(0.2kπ) + cos
(
2kπ +

π

3

)

= 3 cos(0.2kπ) + 0.5
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This effect is illustrated on the next slide.
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Figure 12.1:  Aliasing effect when using low sampling
 rate
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Conclusion:

To mitigate the effect of aliasing the sampling rate
must be high relative to the rate of change of the
signals of interest.  A typical rule of thumb is to
require that the sampling rate be 5 to 10 times the
bandwidth of the signals.



Goodwin, Graebe, Salgado©, Prentice Hall 2000Chapter 12

Signal Reconstruction

The output of a digital controller is another sequence
of numbers {u[k]} which are the sample values of
the intended control signal.  These sample values
need to be converted back to continuous time
functions before they can be applied to the plant.
Usually, this is done by interpolating them into a
staircase function u(t) as illustrated in Figure 12.2.
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Figure 12.2: Staircase reconstruction
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Illustration of Signal Reconstruction
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Figure 12.11:  The result of reconstruction
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Modelling

Given the process of signal reconstruction and
sampling, we see that the net result is that, inside the
computer, the system input and output simply appear
as sequences of numbers.

It therefore makes sense to build digital models that
relate a discrete time input sequence, {u(k)}, to a
sampled output sequence {y(k∆)}.
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Linear Discrete Time Models

A useful discrete time model of the type referred to
above is the linear version of the high order
difference equation model.  In the discrete case, this
model takes the form:

Note that we saw a special form of this model in
relation to the motivational servo example presented
earlier.

y[k + n] + an−1y[k + n − 1] + · · · + a0y[k]

= bn−1u[k + n − 1] + · · · + b0u[k]
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To simplify the way we write the model equations,
we will find it useful to have a simple notation to
represent a time-shifted output sample,
We introduce a special operator (the shift operator)
that allows us to write this very compactly.

.�
�
�

�
�
� ∆+mky
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The Shift Operator

Forward shift operator

In terms of this operator, the model given earlier
becomes:

For a discrete time system it is also possible to have
discrete state space models. In the shift domain these
models take the form:

q(f [k]) � f [k + 1]

qny[k] + an−1q
n−1y[k] + · · · + a0y[k] = bmqmu[k] + · · · + b0u[k]

qx[k] = Aqx[k] +Bqu[k]
y[k] = Cqx[k] +Dqu[k]
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Z-Transform

Analogously to the use of Laplace Transforms for
continuous time signals, we introduce the Z-transform
for discrete time signals.

Consider a sequence {y[k]; k = 0, 1, 2, …].  Then the
Z-transform pair associated with {y[k]} is given by

Z [y[k]] = Y (z) =
∞∑

k=0

z−ky[k]

Z−1 [Y (z)] = y[k] =
1
2πj

∮
zk−1Y (z)dz
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A table of Z-transforms of typical sequences is given
in Table 12.1 (see the next slide).

Also, a table of Z-transform properties is given in
Table 12.2 (see the slide after next).
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f [k] Z [f [k]] Region of convergence

1
z

z − 1 |z| > 1

δK [k] 1 |z| > 0
k

z

(z − 1)2 |z| > 1

k2 z(z − 1)
(z − 1)3 |z| > 1

ak z

z − a
|z| > |a|

kak az

(z − a)2
|z| > |a|

cos kθ
z(z − cos θ)

z2 − 2z cos θ + 1 |z| > 1

sin kθ
z sin θ

z2 − 2z cos θ + 1 |z| > 1

ak cos kθ
z(z − a cos θ)

z2 − 2az cos θ + a2
|z| > a

ak sin kθ
az sin θ)

z2 − 2az cos θ + a2
|z| > a

k cos kθ
z(z2 cos θ − 2z + cos θ)

z2 − 2z cos θ + 1 |z| > 1

µ[k]− µ[k − ko], ko ∈ N
1 + z + z2 + . . .+ zko−1

zko−1
|z| > 0

Table 12.1:  Z-transform table

ibruce
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Table 12.2: Z-transform properties. Note that Fi(z) = Z[fi[k]], µ[k]
denotes, as usual, a unit step, y[∞] must be well 
defined and  the convolution property holds provided 
that f1[k] = f2[k] = 0 for all  k < 0.

f [k] Z [f [k]] Names
l∑

i=1

aifi[k]
l∑

i=1

aiFi(z) Partial fractions

f [k + 1] zF (z)− zf(0) Forward shift
k∑

l=0

f [l]
z

z − 1F (z) Summation

f [k − 1] z−1F (z) + f(−1) Backward shift
y[k − l]µ[k − l] z−lY (z) Unit step

kf [k] −z
dF (z)

dz
1
k
f [k]

∫ ∞

z

F (ζ)
ζ

dζ

lim
k→∞

y[k] lim
z→1

(z − 1)Y (z) Final value theorem

lim
k→0

y[k] lim
z→∞Y (z) Initial value theorem

k∑
l=0

f1[l]f2[k − l] F1(z)F2(z) Convolution

f1[k]f2[k]
1
2πj

∮
F1(ζ)F2

(
z

ζ

)
dζ

ζ
Complex convolution

(λ)kf1[k] F1

(
z
λ

)
Frequency scaling
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How do we use Z-transforms ?

We saw earlier that Laplace Transforms have a
remarkable property that they convert differential
equations into algebraic equations.

Z-transforms have a similar property for discrete
time models, namely they convert difference
equations (expressed in terms of the shift operator q)
into algebraic equations.

We illustrate this below for a discrete high-order
difference equation model:
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Discrete Transfer Functions
Taking Z-transforms on each side of the high order
difference equation model leads to

where  Yq(z), Uq(z)  are the Z-transform of the sequences
{y[k]} and {u[k]} respectively, and

Aq(z)Yq(z) = Bq(z)Uq(z) + fq(z, xo)

Aq(z) = zn + an−1z
n−1 + · · ·+ ao

Bq(z) = bmzm + bm−1z
m−1 + · · ·+ bo
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We then see that (ignoring the initial conditions) the
Z-transform of the output Y(z) is related to the Z-
transform of the input by  Y(z) = Gq(z)U(z) where

Gq(z) is called the discrete (shift form) transfer
function.

Gq(z)
�
=

Bq(z)
Aq(z)
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An interesting observation

We see from Table 12.1 that the Z-transform of a
unit pulse is 1.  Also, we have just seen that Z-
transform of the output of discrete linear systems
satisfies

Y(z) = Gq(z)U(z)

where  Gq(z) is the transfer function and U(z) the
input.

Hence, the transfer function is the Z-transform of the
output when the input is a Kronecker delta.
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Example:

Find the unit step response of a system with transfer
function given by

Solution:  The Z-transform of the step response,
y[k], is given by

The response is shown on the next slide.

Gq(z) =
0.5

z + 0.8

Yq(z) =
0.5

z + 0.5
Uq(z) =

0.5z
(z + 0.5)(z − 1)

Expanding in partial fractions (use MATLAB command residue) we obtain

Yq(z) =
z

3(z − 1) −
z

3(z + 0.5)
⇐⇒ y[k] =

1
3

(
1− (−0.5)k)

µ[k]

ibruce
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Figure 12.3: Unit step response of a system 
exhibiting ringing response
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Note that the response contains the term (-0.5)k,
which corresponds to an oscillatory behavior (known
as ringing).  In discrete time this can occur (as in this
example) for a single negative real pole whereas, in
continuous time, a pair of complex conjugate poles
are necessary to produce this effect.


	EE4CL4 - Lecture #26 cover page.pdf
	ELEC ENG 4CL4:Control System Design

	EE4CL4 - Lecture #27 cover page.pdf
	ELEC ENG 4CL4:Control System Design

	EE4CL4 - Lecture #27 cover page.pdf
	ELEC ENG 4CL4:Control System Design

	EE4CL4 - Lecture cover page.pdf
	ELEC ENG 4CL4:Control System Design




