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Is a Dedicated Digital Theory Really
Necessary?

We could well ask if it is necessary to have a separate theory
of digital control or could one simply map over a continuous
design to the discrete case.  Three possible design options
are:
1) Design the controller in continuous time, discretize the result 

for implementation and ensure that the sampling constraints do 
not significantly affect the final performance.

2) Work in discrete time by doing an exact analysis of the at-sample
response and ensure that the intersample response is not too 
surprising, or

3) carry out an exact design by optimizing the continuous response
with respect to the (constrained) digital controller.

We will analyze and discuss these 3 possibilities below.
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1. Approximate Continuous Designs

Given a continuous controller, C(s), we mention three
methods drawn from the digital signal processing
literature for determining an equivalent digital controller.
1.1 Simply take a continuous time controller expressed in 

terms of the Laplace variable, s and then replace every 
occurrence of  s  by the corresponding delta domain 
operator γ.  This leads to the following digital control law:

where C(s) is the transfer function of the continuous time
controller and where           is the resultant transfer 
function of the discrete time controller in delta form.

)(1 γC

C1(γ) = C(s)
∣∣
s=γ



Chapter 13  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

1.2 Convert the controller to a zero order hold discrete 
equivalent.  This is called a step invariant transformation.
This leads to

where C(s), Gh0(s) and              are the transfer functions
of the continuous time controller, zero order hold and 
resultant discrete time controller respectively.

)(2 γC

C2(γ) = D [sampled impulse response of {C(s)Gh0(s)}]
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1.3 We could use a more sophisticated mapping from  s  to  γ.
For example, we could carry out the following 
transformation, commonly called a bilinear transformation
with pre-warping.  We first let

The discrete controller is then defined by

s =
αγ

∆
2 γ + 1

⇐⇒ γ =
s

α − ∆
2 s

C3(γ) = C(s)|s= αγ
∆
2 γ+1
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We next choose  α  so as to match the frequency responses
of the two controllers at some desired frequency, say ω*.
For example, one might choose ω* as the frequency at 
which the continuous time sensitivity function has its 
maximum value.

We illustrate the above 3 ideas below for a simple
system.
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Example 13.2

A plant has a nominal model given by

Synthesize a continuous time PID controller such
that the dominant closed loop poles are the roots of
the polynomial  s2 + 3s + 4.

Go(s) =
1

(s − 1)2
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The closed loop characteristic polynomial Acl(s) is
chosen as

where the factor  s2 + 10s + 25 has been added to
ensure that the degree of  Acl(s) is 4, which is the
minimum degree required for an arbitrarily chosen
Acl(s).

Acl(s) = (s2 + 3s+ 4)(s2 + 10s+ 25)
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On solving the pole assignment equation we obtain
P(s) = 88s2 + 100s + 100 and                       This
leads to the following PID controller

We next study the 3 procedures suggested earlier for
obtaining an equivalent digital control law.

.15)( += ssL

C(s) =
88s2 + 100s+ 100

s(s+ 15)
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1.1 Method 1 - Here to obtain a discrete time PID controller
we simply substitute  s  by  γ.  In this case, this yields

or, in Z transform form

where we have assumed a sampling period  ∆ = 0.1.

Cδ(γ) =
88γ2 + 100γ + 100

γ(γ + 15)

Cq(z) =
88z2 − 166z + 79
(z − 1)(z + 0.5)
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The continuous and the discrete time loops are
simulated with SIMULINK for a unit step reference
at t = 1 and a unit step input disturbance at t = 10.
The difference of the plant outputs is shown in
Figure 13.3.
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Figure 13.3: Difference in plant outputs due to 
discretization of the controller 
(sampling period =0.1[s])
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For the above example, we see that method 1.1 (i.e.
simply replace  s  by  γ) has led to an entirely
satisfactory digital control law.  However, this isn’t
always the case as we show by the next example.
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Example 13.3

The system nominal transfer function is given by

and the continuous time controller is

Replace the controller by a digital controller with
∆ = 0.157[s] preceded by a sampler and followed by a
ZOH using the three approximations outlined earlier.

Go(s) =
10

s(s+ 1)

C(s) =
0.416s+ 1
0.139s+ 1
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Three methods for directly mapping a
continuous controller to discrete time

1.1 Replacing  s  by γ in  C(s) we get

1.2 The ZOH equivalent of  C(s)  is

1.3 For the bilinear mapping with pre-warping, we
choose ω* = 5.48.  This gives  α = 0.9375 and
the resulting controller becomes

C1(γ) =
0.416γ + 1
0.139γ + 1

C2(γ) =
0.694γ + 1
0.232γ + 1

C3(γ) = C(s)
∣∣
s= αγ

∆
2 γ+1

=
0.4685γ + 1
0.2088γ + 1
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Simulation Results

The above 3 digital controllers were simulated and
their performance checked against the performance
achieved with the original continuous controller.
The results are shown on the next slide.
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Figure 13.4: Performance of different control designs:  
continuous time (yc(t)), simple substitution (y1(t)),
step invariance (y2(t)) and bilinear transformation
(y3(t)).
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We see from the figure that none of the
approximations exactly reproduces the closed-loop
response obtained with the continuous time
controller.  Actually for this example, we see that
simple substitution (Method (1.1)) appears to give
the best result and that there is not much to be gained
by fancy methods here.  However, it would be
dangerous to draw general conclusions from this one
example.
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2.  At-Sample Digital Design

The next option we explore is that of doing an exact
digital control system design for the sampled
response.

We recall that the sampled response is exactly
described by appropriate discrete-time-models
(expressed in either the shift or delta operators).
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Time Domain Design

Any algebraic technique (such as pole assignment)
has an immediate digital counterpart.  Essentially all
that is needed is to work with  z  (or γ)  instead of the
Laplace variable, s, and to keep in mind the different
region for closed loop stability.

We illustrate below by several special digital control
design methods.
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Minimal Prototype

The basic idea in this control design strategy is to
achieve zero error at the sample points in the
minimum number of sampling periods, for step
references and step output disturbances (with zero
initial conditions).  This implies that the
complementary sensitivity must be of the form

To(z) =
p(z)
zl



Chapter 13  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

Case 1:
The plant sampled transfer function, G0q(z) is
assumed to have all its poles and zeros strictly inside
the stability region.  Then the controller can cancel
the numerator and the denominator of G0q(z) and the
pole assignment equation becomes

where
Lq(z)Aoq(z) + Pq(z)Boq(z) = Aclq(s)

Lq(z) = (z − 1)Boq(z)Lq(z)
Pq(z) = KoAoq(z)

Aclq(s) = zn−mBoq(z)Aoq(z)
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Simplifying, we obtain

This equation can now be solved for K0 by evaluating
the expression at z = 1.  This leads to K0 = 1, and to a
controller and a complementary sensitivity given by

We illustrate this case with an example.

(z − 1)Lq(z) +Ko = zn−m

Cq(z) = [Goq(z)]−1 1
zn−m − 1

; and To(z) =
1

zn−m
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Example 13.4

Consider a continuous time plant with transfer
function

Synthesize a minimum prototype controller with
sampling period ∆ = 0.1[s].

Go(s) =
50

(s+ 2)(s+ 5)

ibruce
10

ibruce
typo in book!

ibruce




Chapter 13  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

The sampled transfer function is given by

Notice that G0q(z) is stable and minimum phase, with
m = 2 and n = 3.  The resulting minimal prototype
control law is:

The next slide shows a simulation of the closed loop
system.

Goq(z) =
0.0398(z + 0.7919)

(z − 0.8187)(z − 0.6065)

Cq(z) =
25.124(z − 0.8187)(z − 0.6065)

(z − 1)(z + 0.7919)
and Toq(z) =

1
z
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Figure 13.5: Plant output for a unit step reference
and a minimal prototype digital control.
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We see that the sampled response settles in exactly
one sample period.  This is as expected, since
T0q(z) = 1/z.  However, Figure 13.5 illustrates one of
the weaknesses of minimal prototype control:
perfect tracking is only guaranteed at the sampling
instants!

(The reader is asked to review the motivating
example described in the slides for Chapter 12.  Note
that exactly the same problem of poor intersample
response arose with the earlier example).
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Case 2:
The plant is assumed to be minimum phase and
stable, except for a pole at z = 1, i.e.
A0q(z) = (z-1)Ā0q(z).  In this case, the minimal
prototype idea does not require that the controller
have a pole at z = 1.  Thus, equations (13.6.6) to
(13.6.8) become

Lq(z) = Boq(z)Lq(z)

Pq(z) = KoAoq(z)

Aclq(z) = zn−mBoq(z)Aoq(z)
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Cq(z) = [Goq(z)]−1 1
zn−m − 1

=
Aoq(z)
Boq(z)

z − 1
zn−m − 1

=
Aoq(z)

Boq(z)(zn−m−1 + zn−m−2 + zn−m−3 + . . .+ z + 1)

Toq(z) =
1

zn−m

The resulting control is as follows.
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Example 13.5

Consider the servo system of Example 3.4.  Recall
that its transfer function is given by

Synthesize a minimal prototype controller with
sampling period ∆ = 0.1[s].

Go(s) =
1

s(s+ 1)

Goq(z) = 0.0048
z + 0.967

(z − 1)(z − 0.905)

967.0
905.033.208)( +

−= z
z

q zC

zq zT 1
0 )( =
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Figure 13.6: Plant output for a unit step reference
and a minimal prototype digital control.
Plant with integration.
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Note that the above results are essentially identical to
the simulation results presented for the motivational
example given in the slides for Chapter 12.
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