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Chapter 4

 Continuous Time Signals
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Specific topics to be covered include:
❖ linear high order differential equation models

❖ Laplace transforms, which convert linear differential
equations to algebraic equations, thus greatly simplifying
their study

❖ methods for assessing the stability of linear dynamic
systems

❖ frequency response.
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Linear Continuous Time Models

The linear form of this model is:

Introducing the Heaviside, or differential, operator ρ〈o〉:

dny(t)
dtn

+ an−1
dn−1y(t)
dtn−1

+ . . . + a0y(t) = bn−1
dn−1

dtn−1
u(t) + . . . + b0u(t)

ρ〈f(t)〉 = ρf(t) � df(t)
dt

ρn〈f(t)〉 = ρnf(t) = ρ
〈
ρn−1〈f(t)〉〉 =

dfn(t)
dtn

ρny(t) + an−1ρ
n−1y(t) + . . . + a0y(t) = bn−1ρ

n−1u(t) + . . . + b0u(t)

We obtain:
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Laplace Transforms

The study of differential equations of the type
described above is a rich and interesting subject. Of
all the methods available for studying linear
differential equations, one particularly useful tool is
provided by Laplace Transforms.
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Definition of the Transform

Consider a continuous time signal y(t); 0 ≤ t < ∞.
The Laplace transform pair associated with y(t) is
defined as

L [y(t)] = Y (s) =
∫ ∞

0−
e−sty(t)dt

L−1 [y(s)] = y(t) =
1

2πj

∫ σ+j∞

σ−j∞
estY (s)ds
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A key result concerns the transform of the derivative
of a function:

L
[
dy(t)
dt

]
= sY (s) − y(0−)
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Table 4.1:  Laplace transform table

f(t) (t ≥ 0) L [f(t)] Region of Convergence

1
1
s

σ > 0

δD(t) 1 |σ| < ∞
t

1
s2

σ > 0

tn n ∈ Z+ n!
sn+1

σ > 0

eαt α ∈ C
1

s− α
σ > 	{α}

teαt α ∈ C
1

(s− α)2
σ > 	{α}

cos(ωot)
s

s2 + ω2
o

σ > 0

sin(ωot)
ωo

s2 + ω2
o

σ > 0

eαt sin(ωot + β)
(sinβ)s + ω2

o cosβ − α sinβ

(s− α)2 + ω2
o

σ > 	{α}

t sin(ωot)
2ωos

(s2 + ω2
o)2

σ > 0

t cos(ωot)
s2 − ω2

o

(s2 + ω2
o)2

σ > 0

µ(t) − µ(t− τ)
1 − e−sτ

s
|σ| < ∞

ibruce
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Table 4.2:  Laplace transform properties. Note that
[ ] [ ] { } .00))()(,,...3,2,1,)()(,)()( 21 <∀==∈== ttftfktysYtfsF ii

f(t) L [f(t)] Names
l∑

i=1

aifi(t)
l∑

i=1

aiFi(s) Linear combination

dy(t)
dt

sY (s) − y(0−) Derivative Law

dky(t)
dtk

skY (s) − ∑k
i=1 s

k−i di−1y(t)
dti−1

∣∣∣∣
t=0−

High order derivative∫ t

0−
y(τ)dτ

1
s
Y (s) Integral Law

y(t− τ)µ(t − τ) e−sτY (s) Delay

ty(t) −dY (s)
ds

tky(t) (−1)k d
kY (s)
dsk∫ t

0−
f1(τ)f2(t− τ)dτ F1(s)F2(s) Convolution

lim
t→∞ y(t) lim

s→0
sY (s) Final Value Theorem

lim
t→0+

y(t) lim
s→∞ sY (s) Initial Value Theorem

f1(t)f2(t)
1

2πj

∫ σ+j∞

σ−j∞
F1(ζ)F2(s− ζ)dζ Time domain product

eatf1(t) F1(s− a) Frequency Shift
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Transfer Functions

Taking Laplace Transforms converts the differential
equation into the following algebraic equation

where

and

G(s) is called the transfer function.

Y (s) = G(s)U(s)

G(s) =
B(s)
A(s)

A(s) =sn + an−1s
n−1 + . . . + a0

B(s) =bn−1s
n−1 + bn−2s

n−2 + . . . + b0

This can be expressed as

snY (s) + an 1sn 1Y (s) + . . . + a0Y (s)

= bn 1sn 1U (s) + . . . + b0U(s) + f(s, xo)

- -

- -
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Transfer Functions for Continuous
Time State Space Models
Taking Laplace transform in the state space model 
equations yields

and hence

G(s) is the system transfer function.

sX(s) − x(0) = AX(s) + BU(s)
Y (s) = CX(s) + DU(s)

X(s) = (sI− A)−1x(0) + (sI− A)−1BU(s)

Y (s) = [C(sI− A)−1B + D]U(s) + C(sI− A)−1x(0)

Y (s) = G(s)U(s)

G(s) = C(sI− A)−1B + D
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Often practical systems have a time delay between
input and output. This is usually associated with the
transport of material from one point to another.  For
example, if there is a conveyor belt or pipe
connecting different parts of a plant, then this will
invariably introduce a delay.
The transfer function of a pure delay is of the form
(see Table 4.2):

where Td is the delay (in seconds).  Td will typically
vary depending on the transportation speed.

H(s) = e−sTd
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Example 4.4 (Heating system).  As a simple
example of a system having a pure time delay
consider the heating system shown below.
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The transfer function from input (the voltage applied
to the heating element) to the output (the temperature
as seen by the thermocouple) is approximately of the
form:

H(s) =
Ke−sTd

(τs + 1)
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Summary

Transfer functions describe the input-output
properties of linear systems in algebraic form.
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Stability of Transfer Functions

We say that a system is stable if any bounded input
produces a bounded output for all bounded initial
conditions.  In particular, we can use a partial
fraction expansion to decompose the total response
of a system into the response of each pole taken
separately.  For continuous-time systems, we then
see that stability requires that the poles have strictly
negative real parts, i.e., they need to be in the open
left half plane (OLHP) of the complex plane  s .
This implies that, for continuous time systems, the
stability boundary is the imaginary axis.



Consider an individual pole of a system transfer function
at s = s1 = σ1+jΩ1:

The impulse response of this pole is:

Note that if:
1. σ1 < 0, then eσ1t→ 0 as t→∞⇒ stable pole

2. σ1 > 0, then eσ1t→∞ as t→∞⇒ unstable pole

3. σ1 = 0, then eσ1t = 1 for ∀t⇒ unstable pole
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Impulse and Step Responses of
Continuous-Time Linear Systems

The transfer function of a continuous time system is
the Laplace transform of its response to an impulse

(Dirac’s delta) with zero initial conditions.

The impulse function can be thought of as the limit
(∆→0) of the pulse shown on the next slide.
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Figure 4.2:  Discrete pulse
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Steady State Step Response

The steady state response (provided it exists) for a
unit step is given by

where  G(s)  is the transfer function of the system.

lim
t→∞ y(t) = y∞ = lim

s→∞ sG(s)
1
s

= G(0)
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We define the following indicators:
Steady state value,  y∞∞∞∞:  the final value of the step response

(this is meaningless if the system has poles in the CRHP).
Rise time, tr:  The time elapsed up to the instant at which the

step response reaches, for the first time, the value kry∞. The
constant kr varies from author to author, being usually
either 0.9 or 1.

Overshoot, Mp:  The maximum instantaneous amount by
which the step response exceeds its final value.  It is
usually expressed as a percentage of y∞∞∞∞
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Undershoot, Mu: the (absolute value of the) maximum
instantaneous amount by which the step response falls
below zero.

Settling time, ts: the time elapsed until the step response
enters (without leaving it afterwards) a specified deviation
band, ±δ, around the final value. This deviation δ, is
usually defined as a percentage of y∞, say 2% to 5%.
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Figure 4.3:  Step response indicators
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Poles, Zeros and Time Responses

We will consider a general transfer function of the
form

β1, β1,…, βm and α1, α2, ,,, αn are the zeros and poles
of the transfer function, respectively. The relative
degree is               .mnnr −=

∆

H(s) = K

∏m
i=1(s− βi)∏n
l=1(s− αl)
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Poles

Recall that any scalar rational transfer function can
be expanded into a partial fraction expansion, each
term of which contains either a single real pole, a
complex conjugate pair or multiple combinations
with repeated poles.
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First Order Pole

A general first order pole contributes

The response of this system to a unit step can be
computed as

H1(s) =
K

τs + 1

y(t) = L−1

[
K

s(τs + 1)

]
= L−1

[
K

s
− Kτ

τs + 1

]
= K(1 − e−

t
τ )
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Figure 4.4:  Step response of a first order system
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A Complex Conjugate Pair

For the case of a pair of complex conjugate poles, it
is customary to study a canonical second order
system having the transfer function.

H(s) =
ω2

n

s2 + 2ψωns + ω2
n
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Step Response for Canonical
Second Order Transfer Function

On applying the inverse Laplace transform we
finally obtain

Y (s) =
1
s
− s + ψωn

(s + ψωn)2 + ω2
d

− ψωn

(s + ψωn)2 + ω2
d

=
1
s
− 1√

1 − ψ2

[√
1 − ψ2

s + ψωn

(s + ψωn)2 + ω2
d

− ψ
ωd

(s + ψωn)2 + ω2
d

]

y(t) = 1 − e−ψωnt√
1 − ψ2

sin(ωdt + β)
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Figure 4.5:  Pole location and unit step response of a
                    canonical second order system.
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