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Chapter 5

Analysis of SISO Control
Loops
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Topics to be covered

For a given controller and plant connected in
feedback we ask and answer the following questions:
❖   Is the loop stable?
❖   What are the sensitivities to various disturbances?
❖   What is the impact of linear modeling errors?
❖   How do small nonlinearities impact on the loop?

We also introduce several analysis tools; specifically

❖   Root locus
❖   Nyquist stability analysis
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Feedback Structures

We will see that feedback can have many desirable
properties such as the capacity to reduce the effect of
disturbances, to decrease sensitivity to model errors
or to stabilize an unstable system. We will also see,
however, that ill-applied feedback can make a
previously stable system unstable, add oscillatory
behaviour into a previously smooth response or
result in high sensitivity to measurement noise.



©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 5

Figure 5.1:  Simple feedback control system 
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In the loop shown in Figure 5.1 we use transfer
functions and Laplace transforms to describe the
relationships between signals in the loop.  In
particular, C(s) and G0(s) denote the transfer
functions of the controller and the nominal plant
model respectively, which can be represented in
fractional form as:

C(s) =
P (s)
L(s)

Go(s) =
Bo(s)
Ao(s)
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Laplace Transforms of System
Input and Output

and

U(s) =
C(s)

1 + Go(s)C(s)

(
R(s) − Dm(s) − Do(s) − Go(s)Di(s) − f(s, xo)

A(s)

)

Y (s) =
1

1 + Go(s)C(s)

[
Go(s)C(s)(R(s)− Dm(s)) + Do(s) + Go(s)Di(s) +

f(s, xo)
A(s)

]
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Figure 5.2:  Two degree of freedom closed loop 
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Nominal Sensitivity Functions

These functions are given specific names as follows:

To(s)
4
=

Go(s)C(s)

1 + Go(s)C(s)
=

Bo(s)P (s)

Ao(s)L(s) + Bo(s)P(s)

So(s)
4
=

1

1 + Go(s)C(s)
=

Ao(s)L(s)

Ao(s)L(s) + Bo(s)P(s)

Sio(s)
4
=

Go(s)

1 + Go(s)C(s)
=

Bo(s)L(s)

Ao(s)L(s) + Bo(s)P(s)

Suo(s)
4
=

C(s)

1 + Go(s)C(s)
=

Ao(s)P (s)

Ao(s)L(s) + Bo(s)P(s)

T0(s) : Nominal complementary sensitivity
S0(t) : Nominal sensitivity
Si0(s) : Nominal input disturbance sensitivity
Su0(s) : Nominal control sensitivity
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Relationship between sensitivities

So(s) + To(s) = 1

Sio(s) = So(s)Go(s) =
To(s)
C(s)

Suo(s) = So(s)C(s) =
To(s)
Go(s)
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Internal Stability

Definition 5.1 (Internal stability).  We say that the
nominal loop is internally stable if and only if all eight 
transfer functions in the equation below are stable.

[
Yo(s)
Uo(s)

]
=

[
Go(s)C(s) Go(s) 1 −Go(s)C(s)

C(s) −Go(s)C(s) −C(s) −C(s)

]

1 + Go(s)C(s)



H(s)R(s)

Di(s)
Do(s)
Dm(s)






©Goodwin, Graebe, Salgado, Prentice Hall 2000Chapter 5

Link to Characteristic Equation

Lemma 5.1 (Nominal internal stability)
Consider the nominal closed loop depicted in Figure
5.2. Then the nominal closed loop is internally stable
if and only if the roots of the nominal closed loop
characteristic equation

all lie in the open left half plane. We call A0L + B0P
the nominal closed-loop characteristic polynomial.

Ao(s)L(s) + Bo(s)P (s) = 0
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Stability and Polynomial Analysis
Consider a polynomial of the following form:

The problem to be studied deals with the question of
whether that polynomial has any root with
nonnegative real part. Obviously, this equation can
be answered by computing the n roots of p(s).
However, in many applications it is of special
interest to study the interplay between the location of
the roots and certain polynomial coefficients.

p(s) = sn + an−1s
n−1 + . . . + a1s + a0
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Some Polynomial Properties of
Special Interest
Property 1:  The coefficient  an-1 satisfies

Property 2:  The coefficient a0 satisfies

Property 3:  If all roots of p(s) have negative real parts, it is
necessary that ai > 0, i ∈ {0, 1, …, n-1}.

Property 4:  If any of the polynomial coefficients is nonpositive
(negative or zero), then, one or more of the roots have
nonnegative real plant.

an−1 = −
n∑

i=1

λi

a0 = (−1)n
n∏

i=1

λi

ibruce
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Routh’s Algorithm

The Routh’s algorithm is based on the following
numerical array:

p(s) =
n∑

i=0

ais
i

sn γ0,1 γ0,2 γ0,3 γ0,4 . . .
sn−1 γ1,1 γ1,2 γ1,3 γ1,4 . . .
sn−2 γ2,1 γ2,2 γ2,3 γ2,4 . . .
sn−3 γ3,1 γ3,2 γ3,3 γ3,4 . . .
sn−4 γ4,1 γ4,2 γ4,,3 γ4,4 . . .
...

...
...

...
...

s2 γn−2,1 γn−2,2

s1 γn−1,1

s0 γn,1

Table 5.1:  Routh’s array
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Where

with m0 = (n+2)/2 and m1 = m0-1 for n even and m1 =
m0 for n odd.  Note that the elements γ0,i and γ1,i are
the coefficients of the polynomials arranged in
alternated form.  Furthermore

γ0,i = an+2−2i; i = 1, 2, . . . , m0 and γ1,i = an+1−2i; i = 1, 2, . . . , m1

γk,j =
γk−1,1 γk−2,j+1 − γk−2,1 γk−1,j+1

γk−1,1
; k = 2, . . . , n j = 1, 2, . . . , mj
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