
Electrical Engineering 4CL4: Control System Design 

Solutions to Midterm Exam 2004 

1. A closed-loop controller is preferable to an open-loop controller for most control problems. 

a. Explain why this is the case. 

b. List under what conditions an open-loop controller might be acceptable, and list the 
advantages of using an open-loop controller as compared to a closed-loop controller in 
such a case. (20 pts) 

a. Closed-loop controllers are more forgiving in the presence of modelling errors, system 
instabilities, unknown initial conditions and disturbances to any signal in the system, because 
the actual output of the plant is being taken into account when producing the control signal. 

b. An open-loop controller may be sufficient if: 

i. a very accurate model of the plant is known, 

ii. the model and its inverse are stable, and 

iii. disturbances and initial conditions are negligible. 

Some advantages of an open-loop controller are: 

i. no sensors required, 

ii. the controller may be reducible to a very simple system (e.g., an IIR filter), and 

iii. no transmission of sensor information required, and consequently a possible source of 
signal delay is removed. 

 



2. The dynamics of a system are described by the differential equation: 
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a. Linearize this equation for ( )x t  near 0. 

b. Express the linearized equation from part a. in state-space form, assuming that the output 
of the state-space model is the variable ( )x t . (20 pts) 

a. The nonlinear term  is linearized via the Taylor series approximation: ( )x te−
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giving the linear equation: 
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b. To obtain a state-space representation of the linearized model, we define three state variables 
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3. For a one-d.o.f., unity-feedback control system with the controller and plant transfer 
functions: 
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determine the range of values for  that ensures stability. (20 pts) K

This control loop has the characteristic polynomial: 
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Evaluating Routh’s array: 
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gives two conditions for stability: 
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4. Consider a one-d.o.f., unity-feedback control system with the controller and plant transfer 
functions: 
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If the system has the input disturbance d t , what does this input disturbance 

contribute to the plant output  in the steady state? (20 pts) 
( ) ( )5sin 6i t=
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In a one-d.o.f., unity-feedback nominal control loop, the plant output is related to an input 
disturbance according to the nominal input disturbance sensitivity: 
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For the given control and plant transfer functions, the nominal input disturbance sensitivity is: 
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For a sinusoidal disturbance, the steady-state response can be found by evaluating the frequency 
response of the nominal input disturbance sensitivity: 
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giving: 
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5. A system has the transfer function: 

( ) 2

2 1
2 1
sH s

s s
− +=
+ +

. 

a. Will the step response of this system exhibit undershoot or overshoot?  Explain your 
answer in terms of the locations of the poles and zeros of the transfer function. 

b. If the step response does exhibit undershoot or overshoot, find both the magnitude and the 
time of maximum undershoot or overshoot. (20 pts) 

a. This transfer function has two real-valued poles at , which will not contribute directly to 
overshoot or undershoot.  (A pair of complex conjugate poles could contribute to overshoot.)  
The transfer function has one nonminimum-phase zero at 

1s = −

1
2=s .  Minimum-phase zeros can 

produce overshoot; conversely, nonminimum-phase zeros produce undershoot.  The closer the 
zero is to the imaginary axis, i.e., the smaller the magnitude of the zero, the larger the 
contribution to overshoot or undershoot.  We note that the nonminimum-phase zero at 1

2=s  is 
closer to the imaginary axis than the poles at , so we would expect that the system would 
exhibit substantial undershoot. 
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a. The Laplace transform of the step response  of this system is: ( )y t
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Taking the inverse Laplace transform of Y  gives: ( )s
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One solutions is at t , which corresponds to the steady-state response y , not the 
minimum.  The second solution, which corresponds to the minimum, can be found as follows: 
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giving a minimum value of ( ) 2 2
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Consequently, the undershoot is ( )2
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6. The Robust Stability Theorem, as given on page 10 of this exam paper, describes a sufficient 
condition for the stability of a true feedback control loop in the presence of a plant modeling 
error.  In some situations, the model used for the controller in the design process is somewhat 
different from the controller than is actually implemented in the true feedback control loop.  
(For example, a digital PID controller may be used to approximate the behaviour of an 
analog PID controller that was used in the design process.)  Such differences may be 
considered controller modeling errors. 

Describe how you might adapt the Robust Stability Theorem so as to give a sufficient 
condition for the stability of a true feedback control loop in the presence of a controller 
modeling error instead of a plant modeling error. (20 pts) 

First we note that the Robust Stability Theorem depends on the open-loop transfer function 
, i.e., the product of the controller and plant transfer functions, and that neither of these 

transfer function appears alone in Eqn. (5.9.6).  Consequently, it does not matter if the error is 
attributed to the plant, the controller or both. 
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Defining the nominal and actual controller models as C  and , respectively, gives the 
multiplicative controller modeling error: 

( )o s ( )C s

( ) ( ) ( )
( )

o

o

C s C s
C s

C s∆

−
. 

Defining the nominal complementary sensitivity for the actual plant model G s  and the nominal 

controller model C : 
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we can now give the Robust Stability Theorem in the presence of a controller modelling error as: 
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