
Chapter 3 - Solved Problems

Solved Problem 3.1. A nonlinear system has an input-output model given by

dy(t)
dt

+ (1 + 0.2y(t))y(t) = u(t) + 0.2u(t)3 (1)

3.1.1 Compute the operating point(s) for uQ = 2. (assume it is an equilibrium point)

3.1.2 Obtain a linearized model for each of the operating points above.

Solutions to Solved Problem 3.1

Solved Problem 3.2. A nonlinear system is described in state space form by the model

ẋ1(t) = −x1(t)2 + x2(t) + 3u(t) (2)
ẋ2(t) = −2x1(t)x2(t) (3)
y(t) = x1(t) (4)

Obtain a linearized model around the equilibrium point (uQ, yQ) = (2, 0).

Solutions to Solved Problem 3.2

Solved Problem 3.3. Consider a discrete time system with input u[k] and output y[k], having an input-
output model given by

y[k] + 0.4y[k − 1] = u[k − 2] (5)

Choose state variables and build a state space model

Solutions to Solved Problem 3.3

Solved Problem 3.4. The input-output model for a nonlinear system is given by

dy(t)
dt

+ f(y) = 2u(t) (6)

where f(y) is the nonlinear function ap-
pearing in the figure.
Build a linearized model for the equilibrium
point determined by uQ = 3.

f(y)
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Solutions to Solved Problem 3.4

Solved Problem 3.5. Consider the electric network shown in Figure 1
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Figure 1: Electric network

3.5.1 Without using any equations, discuss how many states the system has.

3.5.2 Build a state space model.

Solutions to Solved Problem 3.5

Solved Problem 3.6. Consider a single tank of constant cross-sectional area A. The flow of water from
the tank is governed by the relationship

fout = K
√
h (7)

where h is the height of liquid in the tank and K is a constant.
Assume that the flow of liquid into the tank is a control variable, u.

3.6.1 Write down the equation governing the height of liquid in the tank.

3.6.2 Linearize the model about a nominal height of h = h∗.

3.6.3 Repeat part (i) and (ii) for a tank where the cross sectional area increases with height i.e., A = ch.

Solutions to Solved Problem 3.6

Solved Problem 3.7. Consider a ball in a frictionless cone which is being rotated as shown in Figure 2.
Write down the equations of motion of the ball in the vertical plane.

Figure 2: Cone

Solutions to Solved Problem 3.7
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Figure 3: Two Tanks

Solved Problem 3.8. Contributed by - James Welsh, University of Newcastle, Australia.
Consider the two tanks system shown in Figure 3:
Q1 & Q2 are steady state flows
H1 & H2 are steady state heights (head)
R1 & R2 are value resistances

All lower case variables are considered to be small quantities.

Find a state space model for the system using h1 and h2 as the state variables and with q1i and q2i as
the inputs.

Solutions to Solved Problem 3.8

Solved Problem 3.9. Contributed by - Alvaro Liendo, Universidad Tecnica Federico Santa Maria, Chile.
Build a linear model around the equilibrium point defined by uQ =

√
6 for the system:

d2y(t)
dt2

+ y(t)
dy(t)
dt

+ y3(t)− y(t) = 2
du(t)
dt

+ u2(t) (8)

Solutions to Solved Problem 3.9

Solved Problem 3.10. Contributed by - Alvaro Liendo, Universidad Tecnica Federico Santa Maria,
Chile.

Build a state space model for the system with input u(t) and output y(t) and having a model given by
the differential equation:

d2y(t)
dt2

+ 3
dy(t)
dt

+ y(t) = 2u(t) (9)

Solutions to Solved Problem 3.10

Solved Problem 3.11. Contributed by - Alvaro Liendo, Universidad Tecnica Federico Santa Maria,
Chile.

Build a state space model for the system with input u(t) and output y(t) and having a model given by
the differential equation

d2y(t)
dt2

+ 3
dy(t)
dt

+ y(t) = 2
du(t)
dt

(10)
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Solutions to Solved Problem 3.11
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Chapter 3 - Solutions to Solved Problems

Solution 3.1.

3.1.1 The operating point (uQ, yQ) must satisfy

(1 + 0.2yQ)yQ = u(t) + 0.2u3
Q =⇒ 0.2y2

Q + yQ − 3.6 = 0 (11)

This yields two operating points, P1 and P2 given by (2,−7.4244) and (2, 2.4244) respectively.

3.1.2 To obtain the linearized models we can proceed in many ways. For instance, we can apply the method
outlined in section §3.10. To do that we define the state as x(t) = y(t). We thus have xQ = yQ and

ẋ(t) = f(x(t), u(t)) = −x(t)− 0.2x(t)2 + u(t) + 0.2u(t)3 (12)
y(t) = g(x(t), u(t)) = x(t) (13)

If we define x(t) = xQ + ∆x(t), u(t) = uQ + ∆u(t), then

d∆x(t)
dt

=
∂f

∂x

∣∣∣∣ x=xQ
u=uQ

∆x(t) +
∂f

∂u

∣∣∣∣ x=xQ
u=uQ

∆u(t) = (−1− 0.4xQ)∆x(t) + (1 + 0.6uQ)∆u(t) (14)

∆y(t) = ∆x(t) (15)

We can also express this in input-output form as

d∆y(t)
dt

+ (1 + 0.4yQ)∆y(t) = (1 + 0.6uQ)∆u(t) (16)

For the two operating points described above, we have

P1 :
d∆y(t)
dt

− 1.9698∆y(t) = 2.2∆u(t) (17)

P2 :
d∆y(t)
dt

+ 1.9698∆y(t) = 2.2∆u(t) (18)

Solution 3.2. We first need to compute the state, (x1Q, x2Q), corresponding to the equilibrium point .
We notice that x1Q = yQ = 0, and from the first state equation we have that

0 = x2Q + 3uQ ⇐= x2Q = −3uQ = 6 (19)

The reader can readily verify that these values also satisfy the second state equation at the equilibrium
point.

We next express the state and plant input, output as
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x1(t) = x1Q + ∆x1(t); x2(t) = x2Q + ∆x2(t) (20)
u(t) = uQ + ∆u(t); y(t) = yQ + ∆y(t) (21)

and we finally use the method presented in section §3.10 of the book, leading to

d∆x1(t)
dt

= −2x1Q∆x1(t) + ∆x2(t) + 3∆u(t) = ∆x2(t) + 3∆u(t) (22)

d∆x2(t)
dt

= −2x2Q∆x1(t)− 2x1Q∆x2(t) = −12∆x1(t) (23)

∆y(t) = ∆x1(t) (24)

Solution 3.3. The interesting aspect of this problem is the two unit delay on the input.
The state variables must include all information we require to know at time k = ko such that, given

the input u[k], for all k ≥ ko, we are able to compute y[k], for all k > ko. From the system equation we
have

y[ko + 1] = u[ko − 1]− 0.4y[ko] (25)
y[ko + 2] = u[ko]− 0.4y[ko + 1] (26)

We see that we require to know y[ko], and u[ko − 1] to predict the future response. We thus choose

x1[k] = y[k]; x2[k] = u[k − 1]; (27)

and we notice that

x1[k + 1] = y[k + 1] = u[k − 1]− 0.4y[k] = x2[k]− 0.4x1[k] (28)
x2[k + 1] = u[k] (29)

y[k] = x1[k] (30)

Setting the above in matrix form, we finally obtain

[
x1[k + 1]
x2[k + 1]

]
=
[
−0.4 1

0 0

] [
x1[k]
x2[k]

]
+
[
0
1

]
u[k] (31)

y[k] =
[
1 0

] [x1[k]
x2[k]

]
(32)

Solution 3.4. The linearized model has the form

d∆y(t)
dt

+
df(y)
dy

∣∣∣∣
Q

∆y(t) = 2∆u(t) (33)
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where y(t) = yQ + ∆y(t) and u(t) = uQ + ∆u(t) We thus need to compute the derivative of f(y) at the
equilibrium point. This is done graphically as shown below

f(y)

0 12

11

f(yQ)

yQ

Q

We note that, at an equilibrium point, f(yQ) = 2uQ. Thus,
in our particular example, f(yQ) = 6. With this value we
find the operating point. The slope of the tangent at that
point is the derivative of f(y) at Q, and is approximately
equal to 1.19. Hence the linearized model is given by

d∆y(t)
dt

+ 1.19∆y(t) = 2∆u(t) (34)

Solution 3.5.

3.5.1 The number of states required for the system is equal to the number of initial conditions we can
arbitrarily set in the network. In this case, the number is three: an initial current in inductor L1

and the initial voltages on C1 and C2. The reader may note that the answer can be different if we
allow some singular cases. For instance, if we make R4 = 0, then the number of states required will
be only two, since then the voltage in C3 will always be equal to the source voltage and hence it can
not be set arbitrarily.

3.5.2 To build the state space model we choose as state variables the electric signals i1(t), v2(t) and v3(t)
which are shown in the network schematic shown in Figure 4.

i1(t) i4(t)

v4(t)
v5(t)

i3(t)v3(t)v2(t)
v1(t)

i2(t)

Figure 4: Electric network skeleton

Applying Kirchoff’s laws and component laws we obtain

v5(t) = vf5(t) = −v4(t) + v3(t) = −R4i4(t) + v3(t) (35)

i4(t) = i1(t)− i3(t) = i1(t)− C3
dv3(t)
dt

(36)

v2(t) = v1(t) + v3(t) = L1
di1(t)
dt

+ v3(t) (37)

i1(t) = −i2(t) = −C2
dv2(t)
dt

(38)

We also notice that the system input is the voltage of the independent voltage source, vf5(t). Rear-
ranging the previous equations we finally obtain
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di1(t)
dt

=
1
L1
v2(t)− 1

L1
v3(t) (39)

dv2(t)
dt

= − 1
C2
i1(t) (40)

dv3(t)
dt

= − 1
C3
i1(t)− 1

R4C3
v3(t) +

1
R4C3

vf5(t) (41)

Solution 3.6.

3.6.1 The volume of liquid in the tank is

V = Ah (42)

The rate of change of liquid in the tank is

dV

dt
= u− fout (43)

A
dh

dt
= u−K

√
h (44)

or
dh

dt
= −K

A

√
h− 1

A
u (45)

3.6.2 If h = h∗, then u = K
√
h∗ for a steady height.

Let h̃ = h− h∗, ũ = u− u∗.
Then linearizing (44) we obtain

A
d(h∗ + h̃)

dt
= u∗ + ũ−K

√
h∗ + h̃ (46)

' u∗ + ũ−K
√
h∗ − K

2
(h∗)

1
2 h̃ (47)

Hence

d

dt
h̃ ' − K

A2
√
h∗
h̃− 1

A
ũ (48)

3.6.3 Here

V = Ah = ch2 (49)

8



Hence

dV

dt
= u− fout (50)

c
dh2

dt
= u−K

√
h (51)

2ch
dh

dt
= u−K

√
h (52)

dh

dt
= − K

2c
√
h

+
u

2ch
(53)

Linearizing about h∗ gives

u∗ = K
√
h∗ as before (54)

(Note that this is reasonable since we have to balance the outflow by the inflow).

Also

dh̃

dt
' − K

2c
√
h∗

+
K

4c
(h∗)−

3
2 h̃− u∗

2ch∗
− ũ

2ch∗
− u∗

2c
(h∗)−2h̃ (55)

=
[
K

4c
(h∗)−

3
2 − u∗

2c
(h∗)−2

]
h̃− ũ

2ch∗
(56)

Solution 3.7. We assume that the cone makes an angle θ with the horizontal plane. Also, assume that
the diameter of the base of the cone is do. Also let h denote the height of the ball.

Then resolving the forces on the ball tangential to the wall, we have

mg cos θ = m

{
cot[h+

do
2

tan θ]
}
ω2 sin θ (57)

Differentiation with respect to time gives

−csc[[h+
do
2

tan θ]2ω2 sin θḣ+ cot[h+
do
2

tan θ]2ωω̇ sin θ = 0 (58)

Solution 3.8. Because we are only interested in small variations, we can assume that flow through the
valves is linearly related to the difference in head.

The equations for Tank 1 then become:

A1
dh1

dt
= q1i − q1o (59)

q1o =
h1 − h2

R1
(60)
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The corresponding equations for Tank 2 are

A2
dh2

dt
= q1o + q2i − q2o (61)

q2o =
h2

R2
(62)

Substituting 60 into 59

dh1

dt
=

1
A1

(
q1i −

h1 − h2

R1

)
(63)

Substituting 60 and 62 into 61

dh2

dt
=

1
A2

(
h1 − h2

R1
+ q2i −

h2

R2

)
(64)

We now define the state variables as

x1 = h1 (65)
x2 = h2 (66)

We then write 63 and 64 respectively as

ẋ1 = − 1
R1A1

x1 +
1

R1A1
x2 +

1
A1

q1i (67)

ẋ2 = − 1
R1A2

x1 −
(

1
R1A2

+
1

R2A2

)
x2 +

1
A2

q2i (68)

In summary, the state space model is

[
ẋ1

ẋ2

]
=

[
− 1
R1A1

1
R1A1

1
R1A2

−
(

1
R1A2

+ 1
R2A2

)][x1

x2

]
+
[ 1
A1

0
0 1

A2

] [
q1i

q2i

]
(69)[

h1

h2

]
=
[
1 0
0 1

] [
x1

x2

]
(70)

Solution 3.9. At equilibrium dny(t)
dtn and dny(t)

dtn are zero. Hence at the equilibrium point, the differential
equation reduces to

y3
Q − yQ = u2

Q (71)

This leads to (uQ, yQ) = (
√

6,−2). The other 2 solutions of the third degree equation are complex
numbers.
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The linearized model is obtained using a first order Taylor series approximation , which is as follows:

f(x(t), y(t)) ≈ f(xQ, yQ) +
∂f

∂x

∣∣∣∣ x=xQ
y=yQ

∆x+
∂f

∂y

∣∣∣∣ x=xQ
y=yQ

∆y (72)

Considering u(t) = uQ + ∆u(t) and y(t) = yQ + ∆y(t), we obtain

y(t)
dy(t)
dt
≈ yQ

d∆y(t)
dt

(73)

y3(t) ≈ 3y2
Q∆y(t) + y3

Q (74)

u2(t) ≈ 2uQ∆u(t) + u2
Q (75)

Thus

d2∆y(t)
dt2

+ yQ
d∆y(t)
dt

+ 3y2
Q∆y(t) + y3

Q −∆y(t)− yQ = 2
d∆u(t)
dt

+ 2uQ∆u(t) + u2
Q (76)

Using equation (71) and the value of uQ and yQ the linear model is

d2∆y(t)
dt2

− 2
d∆y(t)
dt

+ 12∆y(t)−∆y(t) = 2
d∆u(t)
dt

+ 2
√

6∆u(t) (77)

Solution 3.10. Consider the states x1(t) = dy(t)
dt and x2(t) = y(t). We then have the differential equation

ẋ1(t) + 3x1(t) + x2(t) = 2u(t) (78)

Thus a suitable state space model is given by

ẋ1(t) = −3x1(t)− x2(t) + 2u(t) (79)
ẋ2(t) = x1(t) (80)
y(t) = x2(t) (81)

Solution 3.11. Consider the states ẋ2(t) = x1(t) and x1(t) = y(t) With these states, the differential
equation can be written

ẍ1(t) + 3ẋ1(t) + x1(t) = 2u̇(t) =⇒ ẍ1(t) + 3ẋ1(t) + ẋ2(t) = 2u̇(t)
=⇒ ẋ1(t) + 3x1(t) + x2(t) = 2u(t)

(82)

Thus a suitable state space model is

ẋ1(t) = −3x1(t)− x2(t) + 2u(t) (83)
ẋ2(t) = x1(t) (84)
y(t) = x1(t) (85)
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