
Chapter 6 - Solved Problems

Solved Problem 6.1. Contributed by - James Welsh, University of Newcastle, Australia.
Find suitable values for the PID parameters using the Z-N tuning strategy for the nominal plant Go.

where

Go(s) =
e−s

s+ 1
(1)

Solutions to Solved Problem 6.1

Solved Problem 6.2. A plant has a nominal given by

Go(s) =
1

(s− 1)2
(2)

Prove that this system cannot be stabilized with a PI controller

Solutions to Solved Problem 6.2

Solved Problem 6.3. Show, using Root Locus analysis that the plant in Problem 6.2 can be stabilized
using a PID controller.

Solutions to Solved Problem 6.3

Solved Problem 6.4. Consider a plant with nominal model given by

Go(s) =
1

s+ 2
(3)

Compute the parameters of a PI controller so that the natural modes of the closed loop response decay
at least as fast as e−5t.

Solutions to Solved Problem 6.4

Solved Problem 6.5. Assume that the Ziegler-Nichols ultimate gain method is used to tune a PID con-
troller for a plant with model

Go(s) = 2
e−s

(2s+ 1)2
(4)

Determine the parameters of the PID controller.

Solutions to Solved Problem 6.5

Solved Problem 6.6. Assume that the theory presented in section §6.5 of the book is used to tune a PI
controller for a process with transfer function

G(s) =
24(s+ 1.5)e−0.2s

(s+ 2)2(s+ 6)
(5)
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6.6.1 Find the approximate model which underlies the tuning strategy. Compare its step response with
that of the true process.

6.6.2 Compute the parameters of a PI controller as per Table 6.2 in the book.

6.6.3 Compare the performance of the PI controller acting on the model with that of PI controller acting
on the true process.

Solutions to Solved Problem 6.6
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Chapter 6 - Solutions to Solved Problems

Solution 6.1. We first determine the critical frequency.
We set s = jω.

Go(jω) =
e−jω

jω + 1
(6)

=
cosω − j sinω

jω + 1
(7)

=
(cosω − j sinω)(−jω + 1)

ω2 + 1
(8)

=
1

ω2 + 1
(−jω cosω − ω sinω + cosω − j sinω) (9)

=
1

ω2 + 1
(cosω − ω sinω − j(ω cosω + sinω)) (10)

at the critical frequency, the imaginary term = 0.

ω cosω + sinω = 0 (11)
ω = − tanω (12)

which when solved, for the smallest +ve value of ω, yields

ωc = 2.0288 rad/sec (13)

hence Pc = 3.097 seconds.
Now the critical gain occurs when

KcGo(jωc) = −1 (14)

∴ Kc =
−1

Go(jωc)
(15)

= 2.2619 (16)

Using Table 6.1 in the book we find the PID parameters to be

Kp = 1.3571 (17)
Tr = 1.548 (18)
Td = 0.3871 (19)

We then choose

τD = 0.1Td (20)
= 0.03871 (21)
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Solution 6.2. We consider the general form of a PI controller as

C(s) =
as+ b

s
(22)

Thus, the closed loop characteristic polynomial, Acl(s), is given by

Acl(s) = numerator of {1 +Go(s)C(s)} = s3 − 2s2 + (1 + a)s+ b (23)

Hence, there are no values for a and b such that Acl(s) is strictly Hurwitz. This originates from the
fact that one of the coefficients of the polynomial Acl(s) is negative no matter what values we choose for
a and b.

Solution 6.3. Since Root Locus analysis is to be used, the PID controller transfer function is first ex-
pressed in pole-zero form, i.e.,

C(s) = K
(s− c1)(s− c2)

s(s− p2)
(24)

Then, the open loop transfer function Go(s)C(s) has relative degree equal to 2, with zeros at c1 and c2
and poles at p1 = 0, p2, p3 = 1 and p4 = 1. Thus implies that the Root Locus has two asymptotes with
slopes ±π2 (for K > 0) and the asymptotes intersect at (σ, 0), where

σ =
∑4
i=1 pi −

∑2
i=1 ci

2
=

2 + p2 − c1 − c2
2

(25)

To ensure stability for a sufficiently large value of K, we choose the controller zeros and the controller
pole so that σ < 0, this requires that

c1 + c2 > 2 + p2 (26)

Say we choose p2 = −12, then (26) is satisfied if we choose, for instance c1 = −3 and c2 = −4. The
Root Locus for K > 0 is shown in Figure 1.

The above results yield a PID controller transfer function

C(s) = K
(s+ 3)(s+ 4)
s(s+ 12)

(27)

Using the MATLAB command rlocfind we can compute the critical value, Kc, such that the closed
loop is stable for all K > Kc. This is done using the MATLAB code

� Go=tf(1,[1 -2 1]);Co=tf([1 7 12],[1 12 0]);GoCo=Go*Co;
� rlocus(GoCo);
� rlocfind(GoCo);

The last command generates a cross-hair that we move until it coincides with the imaginary axis
crossing of the root locus. A mouse click delivers Kc ≈ 135

Alternatively one can enter the MATLAB environment rltool with the command

� rltool(Go,Co);
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Figure 1: Root locus

Solution 6.4. A PI controller has transfer function given by

C(s) =
as+ b

s
; where a = Kp; b =

Kp

Tr
(28)

The the closed loop characteristic polynomial, Acl(s), is given by

Acl(s) = numerator of {1 +Go(s)C(s)} = s2 + (2 + a)s+ b (29)

We choose the controller to obtain a pair of complex conjugate poles. To achieve a closed loop transient
as fast as e−5t, those poles must have real parts equal to −5. This requires a = 8 and b = 49. Hence

C(s) =
8s+ 49

s
; (30)

The closed loop response to a unit step reference is shown in Figure 2.

Solution 6.5. We have to find the critical frequency, ωc and the critical gain, Kc. This can be done
using, for instance, the Bode diagrams shown in Figure 3.
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Figure 2: Closed loop unit step response

10
−2

10
−1

10
0

10
1

−50

−40

−30

−20

−10

0

10

M
ag

ni
tu

de
 [d

B
]

10
−2

10
−1

10
0

10
1

−800

−600

−400

−200

0

Frequency  [rad/s]

P
ha

se
 [o

]

K
c
 

ω
c
 

Figure 3: Bode diagrams
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From the diagrams in Figure 3 we obtain ωc = 0.96 [rad/s] and Kc = −6.5 [dB] = 0.4732. The
oscillation period is then Pc = 2π/ωc = 6.55. Finally, from Table 6.1 in the book, the parameters of the
PID controller are

Kp = 0.6Kc = 0.2839; Tr = 0.5Pc = 3.27; Td = 0.125Pc = 0.819 (31)

Solution 6.6.

6.6.1 The methods based on using process step response implicitly use a (nominal) model having the
general form

Go(s) =
Koe

−τos

νos+ 1
(32)

The model parameters Ko, τo and νo are obtained from the process step response. For the system in
equation (5), the step response is as shown in Figure 4.
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Figure 4: Plant response to an input u(t) = µ(t)

From Figure 4 we have that Ko = 1.5, νo = t2 − t1 = 0.703 and τo = t1 = 0.272 (use the MATLAB
command ginput. Therefore the approximate model is

Go(s) =
1.5e−0.272s

0.703s+ 1
(33)

We next apply a unit step input to both, G(s) and Go(s). The results are shown in Figure 5.

6.6.2 The controller parameters are then computed using Table 6.2 in the book employing the values
obtained above for νo, Ko and τo = t1. This yields a controller given by

C(s) = Kp

(
1 +

1
Trs

)
= 1.55

(
1 +

1
0.81s

)
(34)
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Figure 5: Comparison of the step response of the process and its model

6.6.3 We next compare the performance of the two control loops: one, where the controller is used to
control the original process, and the other, where the controller is used to control a system having
the nominal model (33). This is done using the SIMULINK schematic shown in Figure 6 1. In the
upper loop the original process is considered, while in the lower loop we use the model (33). Both
loops are driven by the same reference. For the simulation we use a unit step reference at t = 1 [s].
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Figure 6: SIMULINK schematic

The simulation is run and the results are shown in Figure 7.

Figure 7 shows that better performance is achieved when the controller is acting on the nominal
model (33). This can be explained by the fact that the approximate model turns out to have a larger
rise time than the real process, as shown in Figure 5.

1 The transfer function blocks C, Gsd and Gosd correspond to LTI Simulink blocks (Control System toolbox).

8



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

Time [s]

Lo
op

 s
te

p 
re

sp
on

se
s y(t)  

y
o
(t)

Figure 7: Closed loop step responses
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