
Chapter 8 - Solved Problems

Solved Problem 8.1. Consider the system described in Solved Problem 5.4 of Chapter 5. Do you think
control of this system would be easy or difficult.

Solutions to Solved Problem 8.1

Solved Problem 8.2. A plant has a nominal model given by

Go(s) =
−s+ 2
(s+ 1)2

(1)

Assume that a feedback controller is designed such that all the closed loop poles have real parts less than
−1, so as to yield zero steady state errors for constant references and disturbances (i.e., the controller has
a pole at the origin). Discuss the impact of the plant NMP zero on the time domain fundamental limitation
relating to controller output u(t) for a unit step reference?.

Solutions to Solved Problem 8.2

Solved Problem 8.3. In a feedback control loop with integration and a plant with transfer function

Go(s) =
2

(s+ 2)2
(2)

the reference is as shown in the figure.
Will the output overshoot the reference at
any time?
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Solutions to Solved Problem 8.3

Solved Problem 8.4. The nominal model of an unstable system is given by

Go(s) =
1

s− 1
(3)

This plant has to controlled with zero steady state error for constant references.

8.4.1 Synthesize a PI controller such as the closed loop poles are located at −0.5 and −1

8.4.2 Compute the closed loop response to a unit step reference. Comment.

Solutions to Solved Problem 8.4

Solved Problem 8.5. Figure 8.5 in the book depicts the control error for a unit step reference for a
system having zeros on the imaginary axis. Note that the error, e(t) is significantly larger than unity.
This is a necessary and sufficient condition for the plant output to exhibit undershoot. In this case, a large
undershoot appears. Note however that if the complementary sensitivity had been

To(s) =
5s2 + 1

s3 + 3s2 + 3s+ 1
(4)
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then, no undershoot arises.
Show that for a given system with zeros on the imaginary axis, the step response will always exhibit

undershoot provided that the zeros have a magnitude sufficiently small.

Solutions to Solved Problem 8.5
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Chapter 8 - Solutions to Solved Problems

Solution 8.1. We saw in the solution to Solved Problem 5.4 that the controller had to be unstable. How-
ever, the situation is compounded by the fact that there is necessarily two real unstable poles having mag-
nitude greater than a nonminimum phase zero. The guidelines presented in chapter 8 of the book suggest
that the bandwidth should be greater than any real unstable pole and less than any real nonmimimum phase
zero. This is clearly impossible here. Indeed, such a system would be virtually impossible to control in a
practical sense.

Solution 8.2. Given the closed loop pole specification, we observe that the closed loop is internally stable,
hence To(2) = 1. We next have that

U(s) = Suo(s)R(s) =
To(s)
Go(s)

R(s) (5)

Also, since the controller has a pole at the origin then, for a unit step reference, u(∞) = Go(0)−1.
Define

u∆(t) = u(t)− u(∞) (6)

Then U∆(s) converges for all <{s} > −1. Therefore

U∆(s) =
[
To(s)
Go(s)

− 1
Go(0)

]
1
s

=
∫ ∞

0

u∆(t)e−st dt (7)

And evaluating at s = 2, we obtain

U∆(0) = 0 =
∫ ∞

0

u∆(t)e−2t dt (8)

The above equation says that the controller output must overshoot and undershoot its stationary value.

Solution 8.3. The reference has Laplace transform given by

R(s) =
1− e−2s − 2s

s2
(9)

Note that lims→0 sR(s) = 0.
Furthermore, the error is given by

E(s) = So(s)R(s) = sS̃o(s)R(s) ∀<{s} ≥ 0 (10)

where S̃o(s) is a stable rational, strictly proper transfer function.
Then
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E(0) =
∫ ∞

0

e(t) dt = lim
s→0

S̃o(s)sR(s) = 0 (11)

Hence, since the integral of the error is zero, it is evident that the error must be negative during at least
one nonzero time interval, i.e.,the output overshoots the reference during those time intervals.
This result holds for all Go(s).

Solution 8.4.

8.4.1 This can be solved as a pole assignment problem using Acl(s) = (s+ 0.5)(s+ 1) = s2 + 1.5s+ 0.5.
This leads to

s︸︷︷︸
L(s)

(s− 1) + as+ b︸ ︷︷ ︸
P (s)

= s2 + 1.5s+ 0.5︸ ︷︷ ︸
Acl(s)

(12)

Hence, the controller transfer function is given by

C(s) =
2.5s+ 0.5

s
(13)

8.4.2 The complementary sensitivity function, To(s), can then be computed using the following MATLAB
code

�Go=tf (1,[1 -1]);C=tf ([2.5 0.5],[1 0]);
�To=minreal(Go*C/(1+Go*C));

The step response can then be obtained with the MATLAB command step(To). The result is shown
in Figure 1. A large overshoot (approximately 56 %) can be observed. This was expected before we
built the controller since equation (8.6.27) from the book applies, with α = 0.5 and ηo = 1. Therefore,
the error must become negative (y > r) during nonzero time interval(s).

However there is an additional problem. After we synthesize the controller, we realize that the open
loop has a zero located at zo = −0.2, this is also located to the right of −α. This implies that equation
(8.6.26) from the book applies, i.e.,

∫ ∞
0

e(t)e 0.2t dt =
1
zo

= −5 (14)

As a consequence, this zero also forces overshoot in the step response.

Solution 8.5. Assume that the system has zeros at s = ±jωo, then the complementary sensitivity can
always be expressed as1

1This is due to the fact that these zeros must not be cancelled. See subsection 8.6.3 of the book.
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Figure 1: Closed-loop response to a unit step reference

To(s) =
(
s2

ω2
o

+ 1
)
T̃o(s) (15)

Therefore the closed loop response for a unit step reference is given by

Y (s) =
1
ω2
o

sT̃o(s)︸ ︷︷ ︸
Y1(s)

+ T̃o(s)
1
s︸ ︷︷ ︸

Y2(s)

=
1
ω2
o

Y1(s) + Y2(s) (16)

Note that Y1(s) has all its poles in the open LHP, thus its Laplace transform converges for all <{s} ≥ 0.
We then have

Y1(0) = 0 =
∫ ∞

0

y1(t) dt (17)

The above equation says that y1(t) must be negative during some nonzero time interval(s). Say that
y1(t) < 0 for t ∈ (t1, t2). This implies that there exists a positive constant m1 satisfying

min
t∈(t1,t2)

y1(t) = −m1 < 0 (18)

Furthermore, assume that there exists a positive constant M2 such that

max
t∈(t1,t2)

y2(t) = M2 (19)

Then, the total response y(t) will be negative provided

m1

−ω2
o

+M2 < 0 (20)

This shows that for ωo small enough, y(t) can be made negative sometime in the interval (t1, t2).
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