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ABSTRACT
Léger et al. (2012) measured the intelligibility of speech that was lowpass filtered
at 1.5 kHz in background noise for a group of hearing-impaired (HI) listeners who
had normal or near-normal hearing below 1.5 kHz. Compared to a control group of
normal hearing (NH) listeners, the HI listeners displayed an overall deficit in speech
understanding. However, the improvement in intelligibility obtained by introducing
temporal or spectral dips into the masking noise (referred to as “masking release”)
was similar for the NH and HI groups. It was not possible to explain the patterns
of masking release exhibited by the two groups using the extended speech intelli-
gibility index (ESII). Also, the ESII only allows for ad hoc implementation of hearing
impairment. This motivated the use of a neural-based intelligibility predictor, to see
what forms of neural speech coding can explain masking release and what types of
cochlear pathology best describe the suprathreshold deficit of the HI listeners while
preserving masking release.

The auditory-periphery model of Zilany et al. (2009, 2014) was used to obtain pre-
dictions of auditory nerve (AN) responses to the stimuli used by Léger et al. (2012).
The effects of outer hair cell (OHC) impairment, inner hair cell (IHC) impairment, and
degeneration of AN fibers were studied. Two different neural-based predictors were
investigated: the Spectro-Temporal Modulation Index (STMI; Elhilali et al., 2003) and
the Neurogram SIMilarity index (NSIM; Hines and Harte, 2010, 2012). Two versions
of each of these metrics were assessed, one that depends only on the mean-rate AN
representation and another that depends on the all-information AN representation
(i.e., includes spike-timing information).

The mean-rate versions of the STMI and NSIM did not accurately predict the patterns
of masking release seen in the human data. The all-information version of the STMI
gave somewhat improved predictions of the NH data but over-predicted the effects
of impairment for the HI group. In contrast, the all-information NSIM gave accurate
predictions of the data for both groups. The best predictions of the deficits in over-
all intelligibility for the HI group were obtained with mixed OHC/IHC impairment and
some degradation of AN fibers.

These results strongly suggest that spike-time coding of speech is required to ex-
plain masking release and that some suprathreshold deficits in intelligibility may be
caused by AN degradation.

I INTRODUCTION
A long-standing question in auditory research has been whether speech features
are represented by spike-timing (Young and Sachs, 1979) or mean-rate (Sachs and
Young, 1979) cues in the auditory nerve (AN) response. Spike-timing cues are gener-
ally more robust in background noise (Sachs et al., 1983), but their necessity cannot
be determined without quantitative predictions of speech intelligibility data. In addi-
tion, both forms of neural coding could be disrupted by cochlear pathology, but the
exact deficits are likely to be dependent on the pattern of cochlear impairment. In this
study, we used a computational model of the AN to explore these issues by means
of direct predictions of a set of speech perception data from Léger et al. (2012).

A Experimental Design of Léger et al. (2012)
The study of Léger et al. (2012) used four sets of 48 Vowel-Consonant-Vowel (VCV)
stimuli in a consonant identification task. Experiment I measured the perception of
Low-Frequency Speech, that is, speech lowpass (LP) filtered at 1.5 kHz. The mean
audiograms of the normal hearing (NH) and hearing impaired (HI) groups are shown
in the left panel of Fig. 1. All the HI subjects have clinically normal or near-normal
thresholds below 1.5 kHz. In addition to outer hair cell (OHC) and inner hair cell
(IHC) impairment producing these audiograms, these participants may also suffer
from degradation of their low-spont AN fibers in cases of normal audiograms (Ku-
jawa and Liberman, 2009) or of both their high-spont and low-spont AN fibers in
cases of threshold shift (Liberman and Dodds, 1984)—see the right panel of Fig. 1.
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Figure 1: What type of cochlear damage is present for near-normal audiograms? Left: Audiograms for the normal
hearing (NH) and hearing impaired (HI) listener groups. The curves show mean air conduction thresholds of the test
ears, with error bars indicating ±1 SD. Horizontal dashed lines show the limits of normal (≤ 20 dB HL) and near-normal
(≤ 30 dB HL) audiometric thresholds. The shaded area shows the frequency limit of the stimuli used in the experiment (i.e.,
< 1.5 kHz). Adapted from Léger et al. (2012) c© Acoustical Society of America. Right: Innervation of inner hair cells
(IHCs) by low spont rate (LSR), medium spont rate (MSR) and high spont rate (HSR) auditory nerve fibers (ANFs).
Reprinted from Bharadwaj et al. (2014) c© 2014 Bharadwaj, Verhulst, Shaheen, Liberman and Shinn-Cunningham.

Speech identification was measured in quiet and using six different masker noises
presented at three different signal-to-noise ratios (−6, −3 and 0 dB SNR):
•Notionally steady (unmodulated) speech-shaped noise.
• Temporally-modulated noises (8-Hz square wave, 100% modulation depth) at a:

– 50% duty-cycle (DC), or
– 25% duty-cycle.
• Spectrally-modulated noises created by passing noise through an array of gamma-

tone filters, each with a bandwidth of 1 ERBN (Glasberg and Moore, 1990), and
setting to zero the output of:
– one filter out of every two (1ERBN/2),
– two adjacent filters out of every four (2ERBN/4), or
– three adjacent filters out of every four (3ERBN/4).

B Perceptual Data from Léger et al. (2012)

As shown in Fig. 2, the HI group had an overall deficit in speech perception com-
pared to the NH group, even though audibility differences were controlled for (by
testing HI listeners in frequency regions of clinically near-normal audibility and am-
plifying speech for listeners with thresholds > 30 dB HL). Furthermore, the degree of
temporal and spectral masking release was the same across the two groups.
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Figure 2: Mean consonant identification scores for VCVs in rationalized arcsine units (RAU) for the NH and HI listener
groups, plotted as a function of SNR (in dB). Conditions were: in quiet (crosses), in temporally-modulated noise (squares),
in spectrally-modulated noise (circles and asterisks), and in unmodulated noise (triangles). Adapted from Léger et al.
(2012) c© Acoustical Society of America.

II SPEECH INTELLIGIBILITY PREDICTORS

A Extended Speech Intelligibility Index (ESII)
The extended speech intelligibility index (ESII) of Rhebergen and Versfeld (2005)
and Rhebergen et al. (2006) is an acoustic-based metric. Predictions are based on
averaging the time-varying SNR. Hearing loss and suprathreshold deficits are imple-
mented in an ad hoc fashion.

B Spectro-temporal Modulation Index (STMI)
Elhilali et al. (2003) developed the spectro-temporal modulation index (STMI) to
quantify the fidelity of the cortical representation of spectral and temporal modu-
lations. AN fiber PSTHs were generated for 128 characteristic frequencies (CFs),
logarithmically spaced from 180 to 7,040 Hz. Each PSTH response was convolved
with a 16-ms rectangular window at 50% overlap to produce mean-rate neurograms.
As shown in Fig. 3, two cortical responses are produced: (1) a reference output, T,
from the original stimulus in quiet and (2) a response to the processed stimulus, N.

STMI = 1−‖T −N‖2

‖T‖2 (1)

The STMI is a scalar value between 0 and 1, with a larger number indicating better
predicted speech intelligibility. Without the lateral inhibitory network (LIN) between
the auditory periphery and cortical models, the STMI is sensitive only to mean-rate
cues. With the introduction of the LIN, some spike-timing cues in the AN are con-
verted to mean-rate cues.

Figure 3: Schematic of calculation of the Neurogram SIMilarity (NSIM) metric based on the reference r and degraded d
auditory nerve (AN) neurograms and the Spectro-Temporal Modulation Index (STMI) based on the processing of the AN
neurograms by a bank of cortical spectro-temporal modulation filters producing template T and “noisy” N auditory cortex
outputs. In some simulations the AN neurograms are passed through a lateral inhibitory network (LIN) before the cortical
modulation filterbank. In this study, the Processing to produce the Test Speech includes the LP filtering of the speech
and the different background noise conditions. In addition, the Test Speech is passed through a version of the Auditory
Periphery Model of Zilany et al. (2014, 2009) that incorporates any hair cell impairment and/or AN fiber degeneration when
computing the degraded AN neurogram d and the noisy cortical output N. Human cochlear tuning from Ibrahim and Bruce
(2010) was used in all cases.

C Neurogram SIMiliarity (NSIM) metric
Hines and Harte (2012, 2010) developed the Neurogram SIMilarity (NSIM) metric
based on a visual image quality metric. In this study, AN fiber PSTHs were collected
for CFs at the 21 frequencies used in the ESII. Mean-rate (MR) neurograms were
produced with 100-µs time bins and convolution with a 128-sample Hamming win-
dow (50% overlap), while all-information (AI) neurograms were produced with 10-µs
time bins and convolution with a 32-sample Hamming window (50% overlap). “Lu-
minance” (µr,µd), “contrast” (σr,σd) and “structure” (σrd) statistics were calculated for
3× 3 patches of the neurogram, and contributions were weighted (α, β and γ) to
determine a single patch NSIM value according to:

NSIM =

(
2µrµd +C1

µ2
r +µ2

d +C1

)α

·
(

2σrσd +C2

σ 2
r +σ 2

d +C2

)β

·
(

σrd +C3

σrσd +C3

)γ

(2)

Weighting parameters (α, β , γ) were set to (1, 0, 1), respectively. A set of regular-
ization parameters C1, C2 and C3 was found that gave greatly improved predictions
compared to the parameters used by Hines and Harte (2012, 2010). An overall met-
ric value was found by averaging the NSIM values over time and CF.

III RESULTS
Prediction results were obtained for the ESII, the STMI with (w/) and without (w/o)
LIN processing, the all-information (AI) NSIM, and the mean-rate (MR) NSIM.

Regression analysis was conducted first with the data for the NH and HI groups fitted
separately and then with the data for the groups combined. The former allows for the
possibility that there may be some group differences not accounted for by cochlear
impairment, while the latter requires that all differences between the NH and HI group
be captured by the AN model.

For all the intelligibility predictors, the mean audiograms of the NH and HI groups
were used. For the STMI, a mixed OHC/IHC impairment with no AN fiber degenera-
tion was investigated. For the NSIM metrics, the effects partial low-spont fiber (LSF)
loss, partial high-spont fiber (HSF) and LSF loss, OHC impairment alone and IHC
impairment alone were also investigated.

A Prediction Results Summary

Table I: Regression Analysis Results

Model NH Group HI Group Comb. Groups
Adj. R2 Adj. R2 Adj. R2

ESII 0.60 0.70 0.55
STMI w/o LIN, mixed HC imp., all ANFs 0.74 0.78 0.58
STMI w/ LIN, mixed HC impairment, all ANFs 0.86 0.93 0.71
AI NSIM, mixed HC impairment, all ANFs 0.91 0.97 0.80
AI NSIM, mixed HC imp., LSF loss 0.91 0.97 0.80
AI NSIM, mixed HC imp., HSF & LSF loss 0.93 0.98 0.86
AI NSIM, OHC impairment, all ANFs 0.91 0.97 0.79
AI NSIM, IHC impairment, all ANFs 0.92 0.98 0.81
MR NSIM, mixed HC impairment, all ANFs 0.78 0.96 0.28
MR NSIM, mixed HC imp., LSF loss 0.77 0.96 0.28
MR NSIM, mixed HC imp., HSF & LSF loss 0.76 0.58 0.69
MR NSIM, OHC impairment, all ANFs 0.77 0.95 0.33
MR NSIM, IHC impairment, all ANFs 0.80 0.96 0.16

Abbreviations: ESII = Extended Speech Intelligibility Index; STMI w/o LIN = Spectro-Temporal Modulation Index without
lateral inhibitory network; STMI w/ LIN = Spectro-Temporal Modulation Index with lateral inhibitory network; AI NSIM =
all-information Neurogram SIMilarity index; HC = hair cell; ANFs = auditory nerve fibers; LSF = low-spont fiber; HSF =
high-spont fiber; OHC = outer hair cell; IHC = inner hair cell; MR NSIM = mean-rate Neurogram SIMilarity index. p values
< 0.01 for all fits. Values for the models providing the best fits are underlined.

B Groupwise Regression Predictions
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Figure 4: STMI predictions using separate regressions for the NH and HI listener groups. Left two columns: Predicted
mean RAU scores versus SNR. The plotting convention is the same as for Fig. 2. Right two columns: Measured mean
RAU scores versus predicted mean RAU scores. Dots show individual values for each of the 19 processing conditions. A
& B: STMI without a LIN. C & D: STMI with a LIN.
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Figure 5: All-information (AI) NSIM and mixed hair-cell (HC) impairment predictions using separate regressions for
the NH and HI listener groups. A & B: All ANFs intact, i.e., without deafferentation. C & D: Some loss of low-spont
(LS), high-threshold ANFs. E & F: Some loss of high-spont (HS), low-threshold ANFs, in addition to loss of LS
ANFs.
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Figure 6: AI NSIM and either outer-hair-cell (OHC) or inner-hair-cell (IHC) impairment alone predictions using sep-
arate regressions for the NH and HI listener groups. Each row is for a different auditory model predictor. A & B: OHC
impairment alone giving the audiometric threshold shifts and no deafferentation. C & D: IHC impairment alone giving
the audiometric threshold shifts and no deafferentation.

C Regression Predictions for Combined Groups
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Figure 7: STMI predictions using a combined regression for the NH and HI groups. Left and middle columns: Predicted
mean RAU scores versus SNR. Right column: Measured mean RAU scores versus predicted mean RAU scores. Symbols
show individual values for each of the 19 processing conditions. A & B: STMI without a LIN. C & D: STMI with a LIN.
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Figure 8: AI NSIM and mixed hair-cell HC impairment predictions using a combined regression for the NH and HI
groups. Plotting convention as for Fig. 7 A & B: All ANFs intact, i.e., without deafferentation. C & D: Some loss of
low-spont (LS), high-threshold ANFs. E & F: Some loss of high-spont (HS), low-threshold ANFs, in addition to
loss of LS ANFs.

IV CONCLUSIONS
• The predictions of the all-information NSIM metric were superior to those of the

other metrics, suggesting that spike-timing cues in the AN representation of speech
are crucial in explaining the masking release data of Léger et al. (2012).
• Adding a LIN in the STMI processing, which makes the STMI somewhat sensi-

tive to spike time cues, did improve the predictions substantially, consistent with
the theory proposed by Shamma and Lorenzi (2013), but the predictions were still
inferior to those of the AI NSIM.
• Partial loss of both high-spont and low-spont AN fibers and mixed OHC/IHC impair-

ment, consistent with Liberman and Dodds (1984), best explained the degraded
speech perception of the HI group.
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