PHYSIOLOGICAL ASSESSMENT OF NONLINEAR HEARING AID AMPLIFICATION SCHEMES
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e The model can incorporate outer hair cell (OHC) and inner hair cell (IHC) impairment
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Nonlinear ampoplifi ' ' ' - OHC and 1/3 by IHC impairment. 0.7 0.7 0.7 0.7

plification schemes for hearing aids have been developed to deal pri y P i
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studies to provide better speech intelligibility and listening comfort than fast-acting § 40+ % —— iR A —— i 04 | —s—j3gp 0.4 .
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The goal of this study was to examine the physiological basis for the relative perfor- 250 500 1000 2000 4000 8000 / NMC White, DMC, slow Babble, DMC, slow
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Database were processed by each a]gonthm. In the case .of WDRC, both single- Figure 2: Model audiogram used in this study.
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temporal modulation index (STMI) value is calculated. High STMI values predict good » The Spectro-Temporal Modulation Index (STMI) of Elhilali et al. [9] is a measure of B. In White Gaussian Noise and Babble Noise 02 62 4 82 02 bz 74 82 panel) and DSL mii/o] (bottom panel).

speech intelligibility, while low values predict poor intelligibility. Preliminary results speech integrity as viewed by a model of the auditory system.

show that ADRO is better at restoring the neural representation of speech than the e The deviation between the template response (i.e. the expected response) and the -
ther algorithms tested hen the WDRC algorithms utilize slow ti tant - - - - Lol 25 DOIE

otner algorithms tested, even wnen ine algoritnms utilize siow time constants. test response at the cortical stage gives a measure of the STMI, as illustrated in

In the case of no background noise, all the algorithms perform similarly well. However, Fig. 3. 0.7 07

when background noise is added, STMI values for higher SPLs drop notably for all the

algorithms except for ADRO, which sustains a stable value throughout the range of

SPLs test. M mormal
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Figure 7: Predictions of speech intelligibility for fast single-channel NAL-NL1 (top

Babble, None panel) and DSL m[i/o] (bottom panel).

‘ IV. CONCLUSIONS I

e All hearing aid algorithms gave very good speech intelligibility predictions for lis-
tening in quiet. Differences between the different algorithms become apparent in
background noise. In general, linear aids work well for low SPLs and nonlinear aids
work better for high SPLs. However, the predicted intelligibility at high SPLs for
some amplification schemes was worse than the unaided intelligibility.

e Slower acting compression worked slightly better overall. However, it does not pro-
vide as much protection as faster acting compression because it does not reduce
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e Computational models of speech processing in the ear and brain were used to in-

. . . . Figure 3: Schematic of the STMI speech-intelligibility predictor computation. The 04 | —%6dB A 0.4 . .
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