
Refractory Properties of Cochlear Implant-Induced Spiking in Auditory Nerve Fibers are
Dependent on Location of Stimulation and Voltage-Gated Channel Type Distribution

Jason Boulet1,2 and Ian Bruce1,2,3

Auditory Engineering Laboratory1, McMaster Integrative Neuroscience Discovery & Study2,
Department of Electrical & Computer Engineering3, McMaster University, Hamilton, ON, Canada

A L 

AUDITORY
ENGINEERING
LABORATORY

Abstract

Background Experimental work has demonstrated that auditory nerve fibers
(ANFs) of cats cannot fully respond to high rates of electrical stimulation, thus
reducing the information transfer to the brain. Miller et al. (2001) have shown
that a limiting factor of the reduced spike information transfer can be attributed
to the neuron’s refractory period. A computational model of a node of Ranvier
of the ANF (Negm and Bruce, 2008) suggested that low-threshold potassium
(KLT) and hyperpolarization-activated cyclic nucleotide-gated cation (HCN)
channels (Yi et al., 2010) might be responsible for a larger refractory period
(Negm and Bruce, in prep.).
Methods We extend that work with a simulation study taking into account
ANF morphology (Woo et al., 2010) to consider the differential spiking activity
as a function of 1) the location of electrical stimulation and 2) nodal channel
composition at important locations along the ANF. Specifically, we test three
ANF models variants: A) only fast Nav and delayed-rectifier Kv at all nodes,
B) with the addition of KLT & HCN channels (Yi et al., 2010) at the first
peripheral node and on the nodes of Ranvier neighboring the soma and C) by
expanding the distribution of KLT channels to all nodes (Bortone et al., 2006).
Results In general, we observed the absolute refractory period of model C
to be the greatest followed by model B, then by model A. Models B and C
contrasted with model A by having a greater probability of spike initiation at
the location of stimulation. Model A did not show a strong relative refractory
period at its peripheral nodes. We argue that the washout of the relative
refractory period in this region was dependent on the low correlation between
the location of the stimulating electrode and the location of spike initiation.
Conclusion Preliminary results indicate that model C is most consistent with
the published physiological data. In addition to the KLT & HCN channels of
model C, other ion channel types may be necessary to explain all aspects of
refractory behavior observed in vivo.
This research was supported by the Natural Sciences and Engineering Research
Council of Canada (Discovery Grant #261736).

I. INTRODUCTION

I Recent studies have shown that electrically stimulated type I cat ANFs
undergo drops in spike rate over the duration of a pulse train for high
pulses rates (Zhang et al., 2007). Computational models of the ANF based
on the Hodgkin–Huxley equations containing only Nav and Kv channels
do not adequately describe these decrements in spike rate.

I Miller et al. (2001) has shown that the duration of refraction can vary
greatly across ANFs, which is also difficult to explain with only Nav and
Kv channels.

I Yi et al. (2010) have experimentally found HCN channels at the first
peripheral node (or terminal) and the nodes neighboring the soma in mouse
spiral ganglion cells. KLT channels have been localized on ANF axons
entering rat cochlear nucleus (Bortone et al., 2006).

I A computational membrane-node model of the cat ANF incorporating
Nav, Kv, KLT and HCN channels has shown that the HCN and KLT
channels can produce increasing spike-rate adaptation and accommoda-
tion with increasing stimulation rate (Negm and Bruce, 2008), as well as
increased refractory periods (Negm and Bruce, in prep.).

I We built a compartmental model of the cat ANF to better understand
how refraction depends on the location and populations of voltage-gated
ion channel species (Nav, Kv, KLT and HCN) and the location and rate
of electrical stimulation from a CI.

I To simulate the activity of various ion channels types, we utilize stochastic
ion channel models, because the resulting fluctuations in excitability are
thought to be behaviorally significant for CI users (Bruce et al., 1999a,b).

II. METHODS: Ion Channel (In-)Activation and Time Constants

(In-)Activation Functions and Time Constants
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Figure 1 : Steady-state activation/inactivation functions and time constants at 37◦C. We
adjusted w∞, z∞, r∞ and s∞ from 22◦C to 37◦C (Cartee, 2000; Rothman and Manis, 2003).

II. METHODS: ANF Models

Compartmental Model
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Figure 2 : Feline ANF morphology is based on Woo et al. (2010). The soma is myelinated,
which contrasts with the mouse and human ANF.

Ion Channel Distribution
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Figure 3 : Hossain et al. (2005) found high densities of Nav1.6 channels located at p1, p4
and c1 in the mouse ANF. Yi et al. (2010) have shown HCN channels at the same nodes
in mouse spiral ganglion cells. KLT channels have been localized on ANF axons entering rat
cochlear nucleus (Bortone et al., 2006).

Circuit Model
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Figure 4 : The circuit model is solved as a discretized (∆t = 2.5 µs) partial differential
equation (Mino et al., 2004) via time-centered Crank–Nicholson, also used in the neural
simulation environment NEURON (Carnevale and Hines, 2006).

II. METHODS: Ion Channel Simulation

Channel kinetics obey continuous-time discrete-state Markov processes. The
state transition diagrams for Nav, Kv (Mino et al., 2002), KLT (Negm and
Bruce, 2008) and HCN1,4 (Liu and Davis, 2012) are shown in Table 1. Red
states indicate fully open states that contribute to conducting ionic current.
We simulated the 4 voltage-gated ion channel types with a channel number
tracking algorithm (Chow and White, 1996; Mino et al., 2002).

Table 1 : State transition diagrams
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II. METHODS: Electrical Stimulation

Monophasic

Biphasic

unit: µs 25 25
IPI

I Three distances from the ANF: intracellular, 0.5 and 1 mm
I Nine sites of stimulation, over nodes p1 to c5
I Monophasic (cathodic) and biphasic (cathodic, then anodic)
I Spherical monopolar extracellular electrode radius: 150 µm
I Inter Pulse Intervals (IPIs) ranging from 0.3 to 10 ms
I 1st pulse amplitude: I1 = (1 + 3RS) θ, 2nd pulse: variable
I Successfully propagated spike is voltage discriminated at c17

III. RESULTS: Single-Pulse Response

Firing Efficiency (FE)

σ
0

0.5

1

340 360 380 400
Injected Current (µA)

F
iri

ng
 E

ffi
ci

en
cy

, F
E

Figure 5 : FE is the probability of a
spike given a single pulse of current in-
put. Data points are the mean values
from 1000 simulation trials and are
fit to an integrated Gaussian (Bruce
et al., 1999a). The threshold current
θ is the current at FE = 0.5 and the
relative spread is RS = σ/θ. This
example is the response from an elec-
trode placed 0.5 mm above node c3.
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Figure 6 : (left) Probability of spike initiation from single pulse stimulation. Results were
gathered from 1000 simulation trials. Probability is mapped onto a color as function of the
stimulated site (x-axis) and the spike initiation node (y -axis). Gray values indicate no spike.
This figure shows the response for an electrode 0.5 mm away from the ANF at FE = 0.5.
(right) Spearman’s correlation (ρ). This is a summary of the plot on the left, but over all
FE’s and distances.
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Figure 7 : (left) Threshold current (θ) and (right) Relative Spread (RS) across all nodes
over 1000 trials.
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Figure 8 : Mean Latency at FE = 0.5 over 1000 trials. (left) Initiation latency and (right)
propagation delay. Both components sum to give the time the spike takes to arrive at node
c17.
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Figure 9 : Jitter at FE = 0.5 for 1000 trials. (left) Initiation latency and (right) propagation
delay jitter.

III. RESULTS: Spike Initiation and Propagation
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Figure 10 : One example of a simulation of the relative membrane potential as a function of
time and node of Ranvier along the ANF. For these particular trials, we present the ANF with
a stimulus 0.5 mm over node p4, with an IPI of 750 µs and a second-pulse magnitude of 1.5θ.

III. RESULTS: Threshold Ratio (2nd-pulse/1st-pulse)
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which has been found to fit the threshold ratio data better with two time scales
(Negm and Bruce, in prep.) than with one (Miller et al., 2001).
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Figure 11 : Second-to-first pulse threshold ratio (θ2/1). Second pulse thresholds are derived
from 100 simulation trials fit to an integrated Gaussian function. In these cases above, we
used a stimulus 0.5 mm over node c3.

III. RESULTS: Time Scales of Refraction

Relative Refractory Periods
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Figure 12 : Relative refractory periods (left) τ1 and (right) τ2.
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Figure 13 : Absolute refractory period τabs (left) arranged by site of stimulation, distance,
model and stimulus, whereas (right) we also show the median values collapsed across site of
stimulation and distance.

III. RESULTS: Spike-Rate Adaptation

Post-Stimulus Time-Histograms at FE = 0.5
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Figure 14 : PSTHs for our model ANFs. The responses are shown for stimulated nodes p1
to c5 at the stimulus rates 200, 800, 2000 and 5000 kHz with monophasic stimulation and at
a distance of 0.5 mm. The PSTHs were generated by averaging across 100 simulation trials
of 200 ms for two sets of time-bins (Zhang et al., 2007).

IV. CONCLUSIONS

I Single-pulse threshold currents in models C>B>A.
I Models B and C show a stronger relationship between where the stimulus

is delivered and where the spike is initiated than model A
I Models B and C show the best fits to the two-time scale refractory func-

tion, as evidenced by the unwieldy relative refractory time constants of
model A.

I Model C has a significantly larger absolute refractory period than models
A and B. Therefore, cell-wide distribution of KLT channels plays a major
role in increasing the absolute refractory period.

I Model A displays evidence of summation for high stimulus rates of 2000
and 5000 pulses/s, similarly to Heffer et al. (2010) in guinea pig ANF.

I Further computational studies must be done to address the relative im-
pacts of refraction, spike-rate adaptation, accommodation and facilitation
(summation) on changes in spike rate over the duration of a pulse train
for high stimulation rates.
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