
1. Introduction
Speech enhancement in multi-speaker babble remains an enormous 
challenge. While the normal functioning human auditory system is 
able to segregate and stream separate sounds in the cocktail-party 
environment, the sensorineural impaired system has a hard time 
listening to a speech signal in the presence of multi-speaker babble. 
One way of explaining human performance is to consider the auditory 
environment as a complex scene containing multiple objects and to 
hypothesize that the normal auditory system is capable of grouping 
these objects into separate perceptual streams based on distinctive 
perceptual cues, while the impaired system cannot. We are developing 
signal-processing strategies to simulate what is involved in sound 
stream segregation. The model is designed to help the missing 
perceptual grouping process of hearing impaired individuals for the 
application of future hearing-aid systems.
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5.  Conclusions
We have presented a framework for speech enhancement using sound stream segregation. Binaural spatial 
cues, periodicity and onset are discribed as the three important cues for perceptual grouping. A number of 
tests were conducted with different combination of talkers, different sentences and difference azimuth 
arrangements. Sound demo are available on the web: 
http://grads.ece.mcmaster.ca/~dongrong/AudioDemo/index.htm
Generally, we achieved about 8-10dB SNR improvement after processing in white noise tests, competing 
speaker tests and multi-talker tests.  Informal listening tests also demonstrate that our model has the 
potential of dramatically attenuating the interference in a substantial manner, while preserving the 
intelligibility of the target stream. 

Figure 2: Unitary Excitatory and Inhibitory Conductances

3.Perceptual Grouping Cues 
It is believed that the stability and flexibility of human auditory scene 
analysis lies in the integration of various cues. Many cues of auditory 
organization have been identified (for example, spatial cues, 
periodicity, onset, amplitude modulation or frequency modulation, see 
[1] and [3]). The three major cues we consider in the current model 
are:

Binaural spatial cues: the direct path from a particular sound source 
usually dominates the received sound signal. The interaural time 
difference (ITD) is the main localization cue used at low frequencies 
(<1.5 kHz), whereas in the high-frequency range (>1.5 kHz) interaural 
intensity differences (IID) are used [4]. 

For each frequency channel, ITD is computed as the lag 
corresponding to the position of the maximum in the binaural 
cross-correlation function (CCF). For the i-th frequency channel, j-th 
time instance and τ-th lag, CCF is defined as in Equation 1, where l is 
the auditory periphery output at the left ear, while r is the auditory 
periphery output at the right ear. Figure 2 illustrates the CCF and the 
ITD grouping for a mixture input of two concurrent speech sounds. 
Sound [u] is presented at -30 degrees, whose energy is dominant in 
the low-frequency range. The other sound [a] is presented at 30 
degrees and appears to be dominant in the high-frequency 
components. As can be seen in the CCF, the low-frequency 
components show a common peak (ITD) at lag L. On the other hand, 
high-frequency components show another common peak at H. 
Therefore two groups of frequency components can be clustered 
utilizing the ITD estimation.

IID is defined as the ratio of the mean powers at the two ears over an 
integration window. For the i-th frequency channel, j-th time 
instance, IID can be computed as in Equation 2. Using the same 
mixture of input signals as in Figure 2, the distribution of IID is 
exhibited in Figure 3. The positive IID shown in the high-frequency 
components means the sound coming from the right side is dominant. 
For low-frequency components, the IID is negative, which corresponds 
to the sound coming from the left side. 

Periodicity: components that are harmonics of a common periodicity 
tend to fuse together. For each frequency channel, periodicity is 
computed as the lag corresponding to the position of the maximum in 
the auto-correlation function (ACF) for each ear. For the i-th frequency 
channel, j-th time instance and τ-th lag, ACF is defined as in Equation 
3. Figure 4 shows the ACF and the periodicity grouping for the same 
input signal used in Figure 2 and 3.

Onset: The auditory nerve responds more strongly at stimulus onsets. 
Moreover, the common onset of bands of spectral energy is critical for 
auditory grouping. The onset detection scheme is based on a neural 
model described in [5]. Figure 5 shows the spectrogram of an 
utterance “This is easy for us” corrupted by white noise and the 
corresponding onset detection results.

4.  Simulation Results
Binaural acoustic signals are required for testing. Recording an extensive test set which covers a broad range 
of locations is unrealistic. An alternative approach is synthesizing virtual sources using a head-related transfer 
function (HRTF). An HRTF data set was obtained from [6]. In the experiments, each sounds stream contained 
in the input mixture can be binauralized in a certain direction by convolving a monaural speech signal from 
the TIMIT database with an impulse response from the HRTF data set. The input sounds are mixed by simply 
adding the waveforms. The model is tested against three different types of noise. Signal to noise ratio (SNR) 
gain is chosen as the performance measurement. 

Figure 3: 
IID estimation and 
grouping. Same mixture of 
input signals as in Figure 2. Sound 
sources localized in the midpoint 
correspond to an IID of zero (red 
dotted line)
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Equation 1: CCF
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Figure 6: Enhancement result for speech 
corrupted by white noise. The left column shows the 
waveform of the original target, corrupted and reconstructed speech 
signals. The right column shows the spectrograms of these signals.

Figure 7: Enhancement result for competing 
speech segregation. The left column shows the waveform of 
the original target, corrupted and reconstructed speech signals. The 
right column shows the spectrograms of these signals.
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Figure 8: Enhancement result for speech 
corrupted by babble noise. The left column shows the 
waveform of the original target, corrupted and reconstructed speech 
signals. The right column shows the spectrograms of these signals.

The first type of noise tested is white noise. Figure 6 
demonstrates a typical result in this case.  The input 
signal is target speech corrupted by white noise. The 
SNR of the mixed signal is 0 dB. Both the target source 
and noise source are localized at 0 degrees. Since the two 
streams have the same directional information, they are 
unable to be segregated by use of binaural cues. 
Nevertheless, due to the relatively stationary and 
statistically uncorrelated property of white noise, both of 
the two monaural cues (onset and periodicity) are  
effective to distinguish the target speech components 
from the noise. After processing, the overall SNR  is 
increased by 7dB. Still, some speech information is lost 
in the high frequency channels because energetic 
masking occurs in those partials. The reconstructed 
signal  sounds somewhat muffled.

The second experimental example is segregation of two 
competing speech streams. The results are plotted in 
Figure 7. In this case, the sound input is a mixture of 
two speech streams coming from 0 and 30 degrees. We 
suppose the one from the center direction is the target 
and the other one is interference. The SNR of the mixture 
signal is 0 dB. After processing, a 10.96 dB SNR gain is 
achieved. In this case, bianural cues are particularly 
useful. However monaural cues turn out to be unreliable. 
Because the two streams have similar sound pressure 
levels, the onset information in both streams can be 
detected and it is hard to tell which stream the onsets 
belong to. Likewise, both of the speech streams contain 
harmonic structures.

The last experimental example is multi-speaker babble 
noise. Again, a graphic representation of the results are 
illustrated in Figure 8. Here, the target speech stream 
comes from 0 degrees. The interference is a combination 
of 4 speech streams, originating from 20, 30, 40 and 50 
degrees repectively. The overall SNR of the mixed signal 
is 0 dB. Compared with the competing speech, the 
energy of the babble interference is distributed over the 
frequency bands. Energetic masking is less probable in 
this case. Therefore the SNR gain is as high as 13.24 dB.

Figure 5: Onset detection. The left panel shows the spectrogram of the 
corrupted speech utterance “this is easy for us”. The right panel shows the onset detection. 
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Figure 1: Overview of 
the stages of the 
model for sound 
stream segregation.

fashion. After converting the dynamic speech signal into static cues in 
the T-F plane, the next step is to determine which channels are to be 
grouped according to the correlations among the perceptual cues. The 
end processing is a stream membership function evolving over each 
frequency channel in time, that indicates whether that channel 
belongs to the target stream or not. A selective amplification or 
suppression is applied based on this mapping. An enhanced speech 
waveform is resynthesized as the final output. 

2. Model
The proposed model is psychophysically 
motivated by Bregman's primitive segregation 
framework [1], which explains auditory scene 
perception. It is a bottom-up process whereby 
streams are parsed according to the 
correlations of perceptual cues. Figure 1 
shows a block diagram of the model we have 
constructed. The model consists of four 
stages. In the first stage, the function of the 
cochlear is approximated  to generate a 
time-frequency (T-F) representation of the 
incoming signal. The frequency selective 
properties of the basilar membrane are 
simulated by a 64-channel gammatone 
filterbank [2]. In the second stage, a set of 
perceptual grouping cues are estimated for 
each T-F elementary unit. The multiple cue 
extractions are preformed in a parellel  

Figure 2: 
C r o s s - c o r r e l a t i o n 
function and ITD 
grouping.  The input signal is 
a mixture of two sound sources. 
The one coming from azimuth −30 
degrees (left side) dominates in the 
low frequency range. L represents 
the grouping of these low 
frequencies. The other one coming 
from 30 degrees dominates in the 
high frequency range.  H stands for 
the grouping of those high 
frequencies. 
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Figure 4: Auto-correlation and periodicity 
grouping. Same mixture of input signals as in Figure 2. L 
represents the grouping of these low frequencies. H stands for the 
grouping of those high frequencies. 
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