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[ITTTThe characteristic edge-effect of lateral inhibition that can be

seen in the mean spike rates results from a spatial edge at a 1202 . . .

regional reduction of spontaneous input. The effect of neuronal > - 4. Discussion and Conclusions

parameters on the prominence of the spurious peak was measured 200 = 11 A spurious peak in the output excitation pattern of the LIN may be a neural generator of tinnitus, the
(Equations 2 & 3; Figures 3 to 8). It was found that the values of the ha 0% phantom perception of sound. Since it was found that a spurious peak could be generated by a LIN whose

neuronal parameters must fall within a very specific and narrow
range for the edge-effect to be seen.
IJSynthesized speech (Figure 9) processed by Bruce and 0" 50 100 150 200 250 300 350 400
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colleagues' model of the normal and impaired ear was also presented . .
Figure 7: Varying Spontaneous Input Rates. The same neural network

parameters fall within a specific range, it is possible that a LIN contributes to a central mechanism of tinnitus.
However, the feasibility of such a mechanism remains to be determined from anatomical and physiological
studies of LINs in the central auditory system.

For LIN processing of speech, harmonics, formants and other patterns that were enhanced by a non-spiking
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as input to a LIN. The LIN parameters that produced the greatest parameters as in Figure 3 were used, except that the threshold potential was set at 20mV. The model (Shamma, 1985) were degraded by this spiking model. This result serves as a good example of the
edge-effect in the spontaneous input simulations were used in this high and low frequency spontaneous input rates were varied from 0 to 400 spikes/s. importance of the level to which biologically relevant details need to be incorporated into computational models.
LIN in an effort to maximize any edge enhancement that might 2 Although it may be concluded that edge enhancement in complex sounds such as speech may not be realized by
occur. To ascertain how formants (vocal tract resonances) in the g 8 recurrent lateral-inhibitory-networks of spiking neurons alone, these results do not preclude the plausibility of
speech-driven input are affected by this LIN, spatio-temporal ;é ° s @ other types of neural circuits from doing so.
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