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Robust Distributed Source Coding
Jun Chen, Member, IEEE, and Toby Berger, Fellow, IEEE

Abstract—We consider a distributed source coding system
in which several observations must be encoded separately and
communicated to the decoder by using limited transmission rate.
We introduce a robust distributed coding scheme which flexibly
trades off between system robustness and compression efficiency.
The optimality of this coding scheme is proved for various special
cases.

Index Terms—CEO problem, common information, distributed
source coding, multiple description coding.

I. INTRODUCTION

T HERE are many situations in which data collected at
different sites must be encoded separately and sent to

a fusion center for subsequent processing. In their landmark
paper [1], Slepian and Wolf showed that it is possible to exploit
the correlation between the data received at different sites even
if the encoders are operated in a completely distributed manner.
They characterized the achievable rate region for the case
where the fusion center (or the decoder) must reproduce sepa-
rately encoded memoryless sources with arbitrarily small error
probability. Their result was further generalized by Cover [2]
via his renowned random binning argument. There have been
many attempts to extend the Slepian–Wolf coding problem by
considering general distortion criteria on the source reconstruc-
tion. Wyner and Ziv [3] derived the rate–distortion function for
the case in which the decoder has access to side information.
A general distributed source coding problem was formulated
by Berger [4] and Tung [5]. However, except for certain special
cases [6]–[9], the problem is still widely open. A variant of
the distributed source coding problem, often referred to as the
CEO problem, has received considerable attention in recent
years [10]–[16]. In particular, for the quadratic Gaussian case,
the rate–distortion region has been completely characterized by
Oohama [17] and Prabhakaran et al. [18].

Multiple description coding is another important class of
source coding problems. In the multiple description problem,
the encoder constructs several descriptions of the source and
sends them separately through unreliable links; the decoder
tries to reconstruct the source given any subset of the de-
scriptions, and the reconstruction quality may depend on the
specific subset that has been received (or equivalently, we can
associate each description with an encoder and each subset
of descriptions with a decoder). Early contributions to this
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problem can be found in [19]–[22]. The first general result
was by El Gamal and Cover (EGC) on the two-description
achievable rate–distortion region [23]. The EGC region was
shown to be tight for the quadratic Gaussian case by Ozarow
[21] and for the no excess sum–rate case by Ahlswede [24].
Further results can be found in [25]–[31].

Distributed source coding problems of the Slepian–Wolf type
and their extensions emphasize compression efficiency but ig-
nore system robustness. A distributed source coding scheme
which is optimal in the sense of compression efficiency can be
very sensitive to the encoder failure, i.e., the performance of the
whole system may degenerate dramatically when one of the en-
coders is subject to a failure. In contrast, the multiple descrip-
tion problem does consider system robustness. However, it is
a centralized source coding problem and its coding schemes in
general cannot be applied in the distributed source coding sce-
nario. Therefore, it is of considerable interest to study robust
distributed source coding schemes that are able to trade off be-
tween two important parameters: system robustness and com-
pression efficiency.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the system model and the problem for-
mulation. Some motivations are given in Section III. In Sec-
tion IV, we first consider two different scenarios, namely, the
distributed source coding scenario and the centralized source
coding scenario, for which the corresponding coding schemes
are given. Then we propose a unified approach by developing a
coding scheme based on the idea of common information. The
quadratic Gaussian case is studied in Section V. The inner bound
and the outer bound of the rate–distortion region are derived,
which coincide in several special cases. We conclude the paper
in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the distributed source coding system shown in
Fig. 1. Let be a memoryless source
with zero-order joint probability distribution on

, where is the common alphabet of the
random variables for and
is the common alphabet of the random variables for

. The target data sequence cannot
be observed directly. Instead, two corrupted versions of

, i.e., and , are observed
by encoder 1 and encoder 2, respectively. Encoder encodes
a block of length from its ob-
served data by using a source code of rate

. Decoder reconstructs the target se-
quence by implementing a mapping

where .
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Fig. 1. Robust distributed source coding system.

Definition 1: The quintuple is said to
be achievable if for any and all sufficiently large , there
exist encoders

and decoders

such that for , and for

Here is a given distortion mea-
sure. Let denote the set of all achievable quintuples.

Remark: More generally, one can allow different distortion
measures at different decoders. We choose the current definition
mainly to simplify notation.

Definition 2: Let and

Since does not depend on and
does not depend on , we shall denote them by and

, respectively. Note that is the dis-
tortion–rate function of the remote source coding problem [32],
[33] with as the hidden source and as the
noisy obervation. Specifically, we have

Correspondingly, the rate–distortion function of the remote
source coding problem is defined as

Here means and form a Markov chain,
i.e., and are independent conditioned on .

Our model was first introduced by Ishwar et al. in [34].
An analogous problem called multilevel diversity coding has
been studied in [35]–[38], which is a centralized source coding
problem since all the encoders have the same observation. A

distributed version of multilevel diversity coding was intro-
duced in [39], where only the lossless case was treated.

III. MOTIVATIONS

Our problem reduces to the CEO problem if
and reduces to the multiple description problem if there

exist deterministic functions and such that

with probability one for . So it is instructive to re-
view the coding schemes for the CEO problem and the multiple
description problem.

For the CEO problem, the distortion constraint is only im-
posed on the reconstruction of the target sequence at decoder
3. The largest known achievable rate–distortion region1 for the
CEO problem is the set of for which there exist
random variables jointly distributed with the generic
source variables such that

1) and ;
2)

;
3) there exists a function such that

, where .
The proof of the achievability of this rate–distortion region is

based on the idea of random binning. The main feature of the
random binning scheme is outlined as follows: there are many
bins at each encoder and many codewords in each bin; instead of
directly sending the codeword, each encoder sends the index of
the bin which contains the codeword that this encoder wants to
convey to the decoder; upon receiving the indices of bins from
all the encoders, the decoder picks one codeword from each bin
such that these codewords are jointly typical.

There are two important parameters for each encoder:
the number of bins and the number of codewords. Roughly
speaking, the number of bins determines the rate of the encoder
while the number of codewords is associated with the descrip-
tion ability of the encoder. When the system is optimized in
the sense of compression efficiency, the number of bins is
minimized at each encoder if the number of its codewords is
fixed (or equivalently, the number of codewords is maximized
at each encoder if the number of bins at that encoder is fixed).
Note that there exists a tradeoff between the maximum number
of codewords at different encoders if the number of bins is
fixed at each encoder (or, equivalently, a tradeoff between the
minimum number of bins at different encoders if the number
of codewords is fixed at each encoder). But intuitively this
optimization is achieved at the price of sacrificing the robust-
ness of the whole system: if the decoder only receives the data
from one of the encoders, then it may not be able to recover
the correct codeword since the decoder only gets a bin index
from one encoder and there are many codewords in that bin.
In general, we can improve the robustness of the distributed
source coding system by reducing the number of codewords
in each bin, which is a way to trade compression efficiency
for system robustness. This is essentially the main idea of the
robust distributed source coding scheme proposed in [34].

1By a timesharing argument, the convex hull of this region is also achievable.
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Now we proceed to discuss multiple description coding. The
multiple description problem has been studied for years and
many coding schemes have been proposed. The common fea-
ture of the existing multiple description coding schemes is as
follows: encoder , sends a vector, say ;

decoder can only decode the part; decoder

3 can decode both and . Clearly, this
idea is also applicable in distributed source coding. In the next
section, we propose a robust distributed coding scheme by com-
bining the random binning technique and the ideas from mul-
tiple description coding.

IV. ACHIEVABLE RATE–DISTORTION REGIONS

A. An Achievable Rate–Distortion Region

Theorem 1: is achievable if there exist
random variables jointly distributed with the
generic source variables such that the following
conditions are satisfied:

1) and
;

2) , where

3) there exist functions and
such that

, where and
.

If denotes the set of these achievable quintuples, then time
sharing yields that is also an achievable region,
i.e., .

Proof: See Appendix I.

Remark:
1) One can readily show by invoking the support lemma [40,

p. 310] that must have letters to preserve the
probability distribution and five more to preserve

, and ; must have letters to pre-
serve the probability distribution and four more to
preserve ,

, and . Therefore, it suffices
to have and

Similarly, it suffices to have and
.

2) It is easy to verify that is a contra-
polymatroid.2

3) Let . It is easy to see that
. Therefore,

there is no loss of generality in assuming
and defining on .

A counterexample constructed by Körner and Marton [42]
shows that in general. Actually even some special
cases of our problem such as the multiple description problem
and the CEO problem are longstanding open problems. How-
ever, a conclusive result can be obtained for the following case.

Corollary 1: We have

there exists such that

for any and , where the second minimization is over
the set of random variables jointly distributed with
the generic source variables such that the following
conditions are satisfied:

1) ;
2) there exist functions

such that
;

3) .
Proof: Since here we are concerned about minimizing
under the distortion constraints and , there is no

loss of generality in assuming that is large enough so
that can be recovered losslessly at decoder 3. In
this case, our problem becomes the remote Heegard–Berger
problem. Its direct coding theorem can be easily reduced from
Theorem 1 while the converse coding theorem can be proved
along the same line as that in [43].

B. Remote Multiple Description Coding

If there exist and such that
with probability one and , our problem becomes
the remote multiple description problem. In this case, the ex-
isting multiple description coding scheme can be adopted after
a slight modification.

Theorem 2:
1) is achievable if there exist random

variables jointly distributed with the
generic source variables such that the following
properties are satisfied:

a) ;
b)

;
c) .

If denotes the set of these achievable quintuples, then
time sharing yields that is also an achievable re-
gion.

2See [41] for the definition of contra-polymatroid.
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2) Let denote the subset of containing all those quintu-
ples satisfying a)-c) and the additional constraints that
is independent of , and is a constant. Define

We have

Proof: Part 1) follows from the Markov lemma and The-
orem 1 (specialized to the two-encoder case) in [29]. Part 2)
can be proved via a continuity argument similar to that in [24]
by replacing Shannon’s rate–distortion function with

and noticing the following Markov relation:

C. A Unified Approach

Theorem 1 is associated with a distributed source coding
scheme while Theorem 2 is associated with a centralized source
coding scheme. For a centralized coding system, since the two
encoders have the same inputs, one knows exactly the operation
of the other and thus they can have arbitrary cooperation. In this
sense, the encoders in a centralized coding system should be
viewed as the different functionalities of a single encoder. For a
distributed coding system, since the two encoders have different
inputs, one does not know for sure about the operation of the
other. As a consequence, the types of cooperation between the
two encoders in a distributed system are very limited. On the
other hand, since centralized coding can be viewed as a special
case of distributed coding, one would expect a unified approach
to both of them. However, it is easy to see that Theorem 1,
when applied to the centralized case (i.e., with
probability one), does not coincide with Theorem 2. That is to
say, Theorem 2 is not a “centralized” version of Theorem 1.
Now it is natural to ask whether there exists a distributed source
coding scheme that subsumes the centralized source coding
scheme in Theorem 2 as a special case.

We shall suggest a unified approach which incorporates these
two schemes in a single framework. The main ingredient is a
concept called the common part (or the common information)
of two dependent random variables in the sense of Gács and
Körner [44] and Witsenhausen [45]. The following definition is
quoted from [46].

Definition 3: The common part of two random variables
and is defined by finding the maximum integer such

that there exist functions and
with ,

, such that with probability one
and then defining .

With this definition, it is obvious that encoder 1 and encoder
2 can agree on the value of with probability one. Therefore,
they can use an efficient centralized coding scheme (of The-
orem 2 type) for the common part and then superimpose a
distributed coding scheme (of Theorem 1 type). This observa-
tion immediately leads to the following theorem.

Theorem 3: Let be the common part of and . The
quintuple is achievable if there exist
random variables jointly
distributed with the generic source variables
such that the following conditions are satisfied:

1) ;
2) and

;
3) ;
4) and

;
5) , where

is the following set:

6) there exist functions: , and
such that

, where and
.

If denotes the set of these achievable quintuples, then time
sharing yields that is also an achievable region.

Proof: This result can be proved by combining the ideas
from Theorem 1 and Theorem 2. The details are omitted.

Remark:
1) Theorem 3 can be reduced to Theorem 1 by setting

constant. If , then
Theorem 3 can be specialized to Theorem 2 by setting

constant and noticing that there is no
loss of generality in requiring to assume values
in .

2) The conventional distributed source coding scheme [4], [5]
does not consider the common part (even if it does exist)
of the observations at different encoders and thus requires
very restricted long Markov chain conditions on the auxil-
iary random variables. As we have seen in Theorem 3, the
long Markov chain conditions are not always necessary, at
least in the case when the observations at different encoders
share a common part.

3) Theorem 3 essentially suggests an approach to bridging
the distributed source coding scheme and the centralized
source coding scheme. However, it is possible that and

do not share any common part even when they are
highly correlated. Hence, it is of special interest to see
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whether there exists a general coding scheme that can tran-
sition smoothly from a distributed scheme to a centralized
scheme when and become more and more correlated
but no common part exists.

V. GAUSSIAN CASE

In this section, we apply the general results obtained in the
previous section to analyze the Gaussian case with squared dis-
tortion measure. Although most of the results in Section IV are
proved for the finite alphabet case with bounded distortion mea-
sure, they can be extended to the Gaussian case with squared
distortion measure by standard techniques [8], [47].

Let
be a sequence of independent and identically distributed (i.i.d.)
zero-mean Gaussian vectors, where and are
mutually independent with variances , , and , respec-
tively.3 Let

Without loss of generality, we shall focus on the region

. For convenience, we denote this region
by .

A. An Inner Bound of the Rate–Distortion Region

We shall derive an inner bound of the rate–distortion region
for the quadratic Gaussian case by evaluating the achievable
region in Theorem 1. Let be the auxiliary
random variables jointly distributed with the generic source
variables such that , ,

, and . Here
are zero-mean Gaussian random variables with variances

, respectively, and they are independent
of ; moreover, are independent of .

Let . It is easy to verify that

and

Therefore, there is no loss of generality in assuming
, i.e., we can assume ,

where and
are mutually independent, and they are independent of

.
Now it follows from Theorem 1 that the following region is

achievable:

3Unless specified otherwise, � , � , and � are assumed to be positive.

where

and

B. An Outer Bound of the Rate-Distortion Region

Let , where

and is independent of and . Let
and . Define

where , , ,
and are given in the expression at the top of the following
page.

Theorem 4: .
Proof: This result can be proved by combining the tech-

niques developed in [21], [17], [18]. The details are left to Ap-
pendix II.

C. On the Tightness of and

Note that is the
rate–distortion region of the quadratic Gaussian CEO problem.
It is known [17], [18] that

(1)

where
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otherwise

and

Corollary 2: and coincide for the quadratic
Gaussian CEO problem, i.e.,

(2)

(3)

Proof: Equation (2) follows from the fact

is the rate–distortion region of the quadratic Gaussian CEO
problem [17], [18].

Now we proceed to prove (3). Since , it suffices to
show that

For any with ,
we have

which implies that . Therefore,
we have

(4)

where

Comparing (1) and (4), it is easy to see that

. Thus, the proof is complete.

Note that is the rate–distortion region of
the Gaussian multiple description problem. It was proved by
Ozarow [21] that if and
only if

where we define in the expression at the
bottom of the following page. Here we use the expression of

given in [23] with some minor corrections by
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[48], [49]; it is well known that this expression is equivalent to
the one derived by Ozarow.

The following corollary states that converges to
as .

Corollary 3: We have
1) ;
2) for any interior point of

, there exists an such that

whenever .
Proof: Part 1) can be deduced from Corollary 5, which will

be proved later. So we shall only prove part 2) here.
Given , define

It is clear that for any . Moreover, we
have if and only if there exists

such that

(5)

(6)

First let converge to with fixed. We
have and ; moreover, con-
straints (5) and (6) become inactive. Then send to . It
follows by continuity that converges
to . The proof is complete.

In contrast, it can be verified that does not converge to
as . The reason is that in

order to achieve , the quantization errors intro-
duced by different encoders must be negatively correlated [49];
however, for , we have

, i.e., the quantization errors of the two encoders are un-
correlated.4 Since is inner semicontinuous with respect to

[50], it implies that is not tight.

4More fundamentally, this difference is due to the fact that the single-letter
long Markov chain constraint is required for the existing distributed source
coding schemes while it is not needed for centralized schemes.

The following corollary shows that and coincide in
some subregions.

Corollary 4: We have

Remark: It is known [16] that

Proof: For any , we have
, and

Thus, if , , then

Therefore, we have

Now we proceed to prove the achievability part. Given
and , choose such that

It can be seen that if

then . The proof is complete.

otherwise.
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D. Gaussian Remote Heegard–Berger Problem

The following theorem provides a complete characteriza-
tion of the rate–distortion region for the Gaussian remote
Heegard–Berger problem (i.e., the case where is
directly available at decoder 2 and decoder 3).

Theorem 5: Let

We have if and only if
and is defined as in the expression at the bottom of the page.

Proof: Since , we can assume that
is directly available at decoder 2 and decoder 3. Hence, any

is achievable. Now only remains
to be characterized. The achievability part follows directly by
evaluating with . For the converse, it
is clear that , which resolves the case

. For the case ,
the details are left to Appendix III.

Remark: The converse cannot be reduced from , which
shows that the outer bound in not tight.

Theorem 5 implies that

and for
. That is to say, for the Gaussian remote Hee-

gard–Berger problem, if decoder 3 achieves the minimum
for a given , then it is impossible for decoder 1 to make a
nontrivial estimation of .

E. Gaussian Remote Multiple Description Coding

Now consider the case when both encoder 1 and encoder 2 can
observe and simultaneously. Clearly,
the rate–distortion region of this problem (denoted by ) is an
outer bound of .

If we assume encoder 1 and encoder 2 can only observe
, i.e., , and let be

the rate–distortion region for this case, then clearly we have
since can be computed from

and .

Theorem 6: , where

Proof: Let denote the multiple description rate–distor-
tion region with as the source. The desired result fol-
lows from the simple observation that

(or ) if and only if

(i.e., ).

Remark: Theorem 6 continues to hold when and
are correlated (with correlation coefficient ). In this case, we
have

Specifically, if
and ; otherwise, if .

Corollary 5: .
Proof: For any , we have

, and

Therefore

(7)

Note that is the rate–distortion function of the re-
mote source coding problem with (or equivalently,

and ) as the noisy observation and
as the hidden source. Clearly, we have

(8)

Moreover, given any , we have

for some satisfying

(9)
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Note that both and
are monotone increasing functions

of . Thus, for the optimization problem

subject to constraint (9), the inequality in (9) can be replaced by
equality, which yields

and . There-
fore, we have

where

Define

We have

(10)

Note that is actually the sum–rate distortion func-
tion of the quadratic Gaussian CEO problem [16]–[18] with

as the hidden source and ( , )
as the noisy observations at two separate encoders, which im-
plies

(11)

It can be readily seen that by combining (7), (8),
(10), and (11). To prove that is strictly contained in , one
just needs to notice that the inequalities in (8) and (11) are strict
if .

F. On the Correlated Noise Case

It is worth noting that the assumption on the mutual indepen-
dence of and can be relaxed. Indeed, the correlated
noise case can sometimes be reduced to the uncorrelated case.

Example 1: If , then
we can write such that

,
, and . Let be the rate–dis-

tortion region with as the hidden source and
as the noisy observations at two

separate encoders, where . Note that
, and now the effective

noise and are mutually independent. Further-
more, we have . It can be
easily shown that if and only if

, where

Example 2: If , then we can
write such that

and . Let be the
rate–distortion region with as the hidden source
and ( , ) as the noisy observations at two
separate encoders. Define .
Note that , and now the effec-
tive noise values and are mutually independent.
Furthermore, we have . It can
be readily shown that if and only if

, where

Therefore, in the preceding examples, it suffices to charac-
terize and ; the results derived for the uncorrelated
noise case can be directly applied.

VI. CONCLUSION

We proposed a robust distributed source coding scheme
which flexibly trades off between system robustness and com-
pression efficiency. The achievable rate–distortion region of
this scheme was analyzed in detail for the quadratic Gaussian
case. We also derived an outer bound on the rate–distortion
region, which was leveraged to establish the optimality of the
proposed scheme in several special cases.

APPENDIX I
PROOF OF THEOREM 1

The proof of Theorem 1 employs techniques which have
already been established in the literature, especially in [43],
[51]–[53]. Hence, we only give a sketch here.

For each satisfying conditions 1) and 3),
we shall prove the admissibility of the rate tuple ,
where

Then by symmetry, the rate tuple with
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is also admissible. Theorem 1 follows by time-sharing
and .

It was shown in [43] that for any positive and sufficiently
large with

decoder 1 and decoder 3 can recover and decoder 1 can con-
struct with such that

moreover, provided and are available to decoder 3, it can
further recover and use to construct with

such
that the average distortion is less than or equal to .

Similarly, with

decoder 2 and decoder 3 can recover and decoder 2 can con-
struct with such that

moreover, provided is available to decoder 3, it can further
recover .

In summary, decoder recovers , and decoder
3 recovers with the decoding order

. The proof is complete.

APPENDIX II
PROOF OF THEOREM 4

The following lemma was proved in [17], [18].

Lemma 1: Let

We have

Now we are ready to prove Theorem 4.

Proof: By the data processing inequality and the rate–dis-
tortion theorem, we have

(12)

(13)

It follows from (12), (13), and Lemma 1 that

In view of the fact that , , we have

Now we proceed to derive a lower bound on . Note that

(14)

where follows from the identity

(15)

and is because . Substituting
(13) into (14), we get

(16)

To lower-bound , we introduce an

auxiliary random vector such that
, where are i.i.d zero-mean Gaussian

random variables with variance (which will be optimized
later). We assume that is independent of .
Since is indepedent of and thus independent of

, we have

i.e.,
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Since

it follows from the rate–distortion theorem that

Now applying the identity (15) to , we
get

(17)

The term can be upper-bounded as
follows:

(18)

where follows from the conditional version of the entropy
power inequality [54]. Note that

where the last equality follows from the fact
. Therefore, we have

(19)

Now we proceed to derive a lower bound on
. Since and

are independent conditioned on ,
it follows by the conditional version of the entropy power
inequality [54] that

(20)

Thus, by (19) and (20)

(21)
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Combining (18) and (21) yields that

(22)

Substituting (22) into (17) and then using (14), we have

which can be rewritten as (23) at the bottom of the page. Com-
bining (16) and (23) yields the second expression at the bottom
of the page, which implies

where

It can be verified that can be de-
fined as shown in the third expression at the bottom of the page,
and thus the proof is complete.

APPENDIX III
PROOF OF THEOREM 5

Note that

(24)

Now we proceed to bound each term separately. By the data
processing inequality and the rate–distortion theorem, we have

(25)

(23)

otherwise
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(27)

(31)

Invoking Lemma 1 with , we get

(26)

Combining (25) and (26) and after some simple calculation, we
obtain (27) at the top of the page. Since , it
follows that

(28)

and

(29)

To bound the term , we first note that

now it follows by the data processing inequality and the rate–
distortion theorem that

(30)
Substituting (25)–(30) back to (24), we get (31), also at the top
of the page, and thus, the proof is complete.

Remark: The main technical difference between the
derivation here and the one used to prove Theorem 4 is
the way to lower-bound . Since for the
Gaussian remote Heegard–Berger problem, it boils down to
lower-bounding , one can adopt the straight-
forward approach as shown above (cf. (30)).
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