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Abstract

We consider a distributed sensing system in which several observations are com-
municated to the fusion center using limited transmission rate. The observations
must be separately encoded so that the target can be estimated with minimum
average distortion. We get an achievable region of rates and average distortion.
The quadratic Gaussian case is discussed in detail and the results are applied to
the quadratic Gaussian CEO problem to derive an upper bound on the sum-rate
distortion function.

I. Introduction

In this paper, we consider the following distributed sensing system (see Fig.1).

Figure 1: Model of distributed sensing system

{X(t)}∞t=1 is the target data sequence that the fusion center is interested in. This data
sequence cannot be observed directly. L sensors are deployed, which observe indepen-
dently corrupted versions of {X(t)}∞t=1. The data rate at which sensor i (i = 1, 2, · · · , L)
may communicate information about its observations to the fusion center is limited to Ri

bits per second 1. Due to wide geographical separation of the sensors or other reasons, the
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1The rate constraints may come from the restrictions on the resources, say bandwidth, power, etc.,
that are available to sensors



sensors are not permitted to communicate with each other, i.e. sensor i has to send data
based solely on its own noisy observations {Yi(t)}

∞
t=1. Finally, the decision {X̂(t)}∞t=1 is

computed from the combined data at fusion center. This model has been studied in [1]
in the case of two sensors. So part of our work can be viewed as a direct generalization
of [1]. A closely related problem, called CEO problem, was discussed in [2] for discrete
case, and [3, 4] for quadratic gaussian case. Here we mainly follow the notations adopted
in [3].

Let {X(t), Y1(t), · · · , YL(t)}
∞
t=1 be a temporally memoryless source with instantaneous

joint probability distribution P (x, y1, y2, · · · , yL) on X × YL, where L is the number of
sensors, X is the common alphabet of the random variables X(t) for t = 1, 2, · · · , Y is the
common alphabet of the random variables Yi(t) for i = 1, · · · , L; t = 1, 2, · · · . In this pa-
per, we let Un denote random vector [U(1), U(2), · · · , U(n)] , and un = [u(1), u(2), · · · , u(n)]
be its realization.

For i = 1, · · · , L, sensor i encodes a block yni = [yi(1), · · · , yi(n)] of length n from its

observed data using a source code c
(n)
i = f

(n)
E, i(y

n
i ) of rate R

(n)
i = 1

n
log |C(n)i |. The code-

words from the L sensors, c
(n)
1 , · · · , c

(n)
L , are sent to the fusion center. The task of fusion

center is to recover the target data sequence xn = [x(1), · · · , x(n)] with small expected
distortion defined as d(n) = 1

n
Ed(Xn, X̂n), where d(x, x̂) is a given distortion measure

and X̂n is the estimate of random target sequence Xn. The fusion center implements a
mapping f

(n)
D : C

(n)
1 × · · · × C

(n)
L → X n, i.e. the estimate at fusion center is of the form

x̂n = f
(n)
D (c

(n)
1 , · · · , c

(n)
L ).

The rest part of this paper is divided into four sections. In Section II we use mul-
titerminal source coding techniques to find an achievable region of rates and average
distortion (R1, R2, · · · , RL, D). The proof of achievability is outlined, with the detailed
proof left to the Appendix. In Section III, we evaluate this region for correlated memo-
ryless Gaussian observations and squared distortion measure. The results are shown to
coincide with known results in special cases. In Section IV, the results got in Section III
are applied to study quadratic gaussian CEO problem. Areas for extension of the results
are suggested in Section V which serves as conclusion.

II. Achievable Region

Definition: A (L+1)-tuple of rates and distortion (R1, R2, · · · , RL, D) is said achievable
if for any ε > 0, there exists an n0 such that for n > n0 there exist encoders:

f
(n)
E,1 : Y

n
1 → C

(n)
1 log |C

(n)
1 | ≤ n(R1 + ε)

f
(n)
E,2 : Y

n
2 → C

(n)
2 log |C

(n)
2 | ≤ n(R2 + ε)

...
...

f
(n)
E,L : Yn

L → C
(n)
L log |C

(n)
L | ≤ n(RL + ε)

and a decoder:
f
(n)
D : C

(n)
1 × C

(n)
2 × · · · × C

(n)
L → X n

such that 1
n
E[

n
∑

t=1

d(X(t), X̂(t))] ≤ D + ε.

Theorem: Given the joint distribution of the discrete random variables (X,Y1, Y2, · · · , YL):
P (x, y1, y2, · · · , yL) and the bounded distortion measure d : X × X → [0, dmax], a



rates-distortion (L + 1)-tuple (R1, R2, · · · , RL, D) is said achievable if there exist ran-
dom variables W1,W2, · · · ,WL on spaces W1,W2, · · · ,WL respectively with Wi → Yi →
(X,YIL\{i},WIL\{i}) for all i ∈ IL; and a function g : W1 ×W2 × · · · × WL → X such
that:

∑

i∈A

Ri ≥ I(YA;WA|WIL\A) (1)

Ed(X, X̂) ≤ D (2)

for any A ⊆ IL, where X̂ = g(W1,W2, · · · ,WL). Here:

(i) The notion A→ B → C means that A,B,C form a Markov chain;

(ii) IL , {1, 2, · · · , L};

(iii) IL \ A , IL
⋂

Ac;

(iv) If B = {i1, i2, · · · , ik}, then WB , (Wi1 ,Wi2 , · · · ,Wik). Specially, W∅ , ∅ and
I(U ;V |∅) , I(U ;V ).

Moreover, if T is the region of (L + 1)-tuple satisfying the above conditions, then any
(L+ 1)-tuple in the convex hull of T is achievable2.

Outline of Proof :
Our proof closely follows the proof in [7] which is based on strong typicality and Cover’s
binning technique [8].
Let (W1,W2, · · · ,WL) and function g satisfy the conditions given in the theorem. Con-

struct the random codebooks {~C(n) = (C
(n)
1 , C

(n)
2 , · · · , C

(n)
L )}3 (where C

(n)
i denotes the

codebook of encoder i) as follows:

At encoder i, generate Mi i.i.d. codewords W
n
i according to

n
∏

l=1

p(wi(l)) and index them

W n
i (j), j = 1, 2, · · · ,Mi. Let C

(n)
i = {W n

i (j)}
Mi

j=1. Randomly assign the indices of the
codewords to one of 2nRi bins4 using a uniform distribution over the indices of the bins
such that every bin contains Ni = Mi2

−nRi codewords . For the simplicity of future proof,
we suppose every generated W n

i satisfy strong typicality. By weak law of large numbers,
this assumption holds with probability close to one when n is large enough. Or we can
simply draw W n

i from strongly typical set to ensure this assumption.

The coding and decoding procedures are described as follows:
Encoding Scheme:
The coding procedure is divided into two operations, called precoding and coding.
At Encoder i, given observations yni , if it’s typical, map it onto the wn

i (j) ∈ C
(n)
i with the

smallest index j such that (yni , w
n
i (j)) is jointly typical. Let wn

i (y
n
i ) denotes the w

n
i onto

which yni is mapped.
For coding, the index of the bin which contains wn

i (y
n
i ) is sent. Let bi(y

n
i ) denote this

2This follows through a time-sharing argument.
3Here C

(n)
i
actually is not the C

(n)
i
stated in the definition at the end of last page. As we will see, we

will not send the codewords in C
(n)
i
directly. Instead, we will send the index of bin. That’s why we have

2nRi bins at encoder i, while generally |C
(n)
i

| > 2nRi .
4We suppose 2nRi is an integer. When n is large enough, this assumption causes no essential loss.



bin index. If yni is not typical or there does not exist wn
i (j) ∈ C

(n)
i such that (yni , w

n
i (j))

is jointly typical, then a special error symbol is sent. This special error symbol does not
increase the rate Ri in the limit of large n, so we may safely ignore it.
Decoding Scheme:
Given (b1, b2, · · · , bL), if there exists a unique (wn

1 , w
n
2 , · · · , w

n
L) such that wn

i ∈ Bi(bi)
(where Bi(bi) denotes the bin with index bi at the encoder i) and (wn

1 , w
n
2 , · · · , w

n
L) is

jointly typical, then call it (ŵn
1 , ŵ

n
2 , · · · , ŵ

n
L); otherwise declare an error and incur the

maximum distortion dmax. If the received vector contains special error symbol, also de-
clare an error and incur the maximum distortion dmax. Assuming no error, produce the
estimate x̂(k) = g(ŵ1(k), ŵ2(k), · · · , ŵL(k)) for k = 1, 2, · · · , n.
See appendix for detailed analysis of the probability of decoding error.

III. Gaussian Case5

For simplicity, in this section, we consider two-sensor case. Let {X(t), Y1(t), Y2(t)}
∞
t=1 be

i.i.d Gaussian vectors with p(y1, y2|x) = p1(y1|x) ·p2(y2|x), i.e. Y1 and Y2 are independent
conditioning on X. We let two auxiliary random variablesW1, W2 be joint Gaussian with
X, Y1, Y2, which makes it possible to get explicit formulae in quadratic Gaussian case.
As usual, squared distortion measure is used here.

A. Parametric Representation

Since W1 → (Y1, Y2)→ W2 and Y1 → X → Y2, we can get the following two equations6:

(

Y1
Y2

)

=

(

1
1

)

X +

(

N1

N2

)

(3)

(

W1

W2

)

=

(

l1 0
0 l2

)(

Y1
Y2

)

+

(

T1
T2

)

(4)

where N1 and N2 are independent Gaussian noises at the two sensors with variance σ2N1

and σ2N2
respectively; l1 and l2 are two scalars; T1 and T2 are two mutually independent

Gaussian random variables with variance σ2T1
and σ2T2

. (N1, N2) are independent of X
and (T1, T2) are independent of (Y1, Y2).

1. Distortion:

We rewrite (3) in the form:

X = (a1 a2)

(

Y1
Y2

)

+ V

where (a1 a2) = RT
Y XR

−1
Y Y and V is a Gaussian r.v. with variance σ2V = σ2X −

RT
Y XR

−1
Y YRY X and independent of (Y1, Y2). Due to the fact that X → (Y1, Y2) →

5Although we only prove the theorem in discrete case and bounded distortion measure. Our result
can be extended straightforward to Gaussian case and squared distortion measure by some standard
techniques [5], [6]. Specifically, the Markov lemma which is fundamental in this proof has been generalized
by [6] to Gaussian case.

6We can also let

(

Y1

Y2

)

=

(

k1

k2

)

X+

(

N1

N2

)

. But since all are zero-mean, (3) can always be got

by scaling. In the case when k1 = 0 (or k2 = 0), we can let σN1
=∞ (or σN2

=∞) in (3).



(W1,W2), (T1, T2) and V are independent. In the Gaussian case, the optimal es-
timate of X from (W1,W2), i.e. E(X|W1,W2), is linear MMSE estimate. So we
have:

X̂(W1,W2) = RT
WXR

−1
WW

(

W1

W2

)

, E(X − X̂(W1,W2))
2 = σ2X −RT

WXR
−1
WWRWX

Substitute the covariances in it, we get:

1

D
≤

1

σ2X
+

µ21
µ21σ

2
N1

+ 1
+

µ22
µ22σ

2
N2

+ 1
(5)

where µi =
li
σ2
Ti

, for i = 1, 2.

Clearly, a nontrivial D should be in the range of D0 ≤ D ≤ σ2X , where D0 =
1

( 1

σ2
X

+ 1

σ2
N1

+ 1

σ2
N2

)
, which is the MMSE of X given (Y1, Y2).

2. Rates:

The theorem gives:

R1 ≥ I(Y1;W1|W2) R2 ≥ I(Y2;W2|W1)

R1 +R2 ≥ I(Y1, Y2;W1,W2)

subject to: E(X − X̂(W1,W2))
2 ≤ D.

For joint Gaussian random vectors ~X, ~Y , ~Z, we have:

I( ~X; ~Y ) =
1

2
log+

detR ~X detR~Y

detR ~X~Y

; I( ~X; ~Y |~Z) =
1

2
log+

detR ~X ~Z detR~Y ~Z

detR ~X~Y ~Z detR~Z

So, we get:

R1 ≥
1

2
log+

(µ21σ
2
Y1

+ 1)(µ22σ
2
Y2

+ 1)− µ21µ
2
2ρ

2σ2Y1
σ2Y2

µ22σ
2
Y2

+ 1
(6)

R2 ≥
1

2
log+

(µ21σ
2
Y1

+ 1)(µ22σ
2
Y2

+ 1)− µ21µ
2
2ρ

2σ2Y1
σ2Y2

µ21σ
2
Y1

+ 1
(7)

R1 +R2 ≥
1

2
log+ [(µ21σ

2
Y1

+ 1)(µ22σ
2
Y2

+ 1)− µ21µ
2
2ρ

2σ2Y1
σ2Y2

] (8)

subject to (5), where RY1Y2
=

(

σ2Y1
ρσY1

σY2

ρσY1
σY2

σ2Y2

)

and ρ = E(XY )
σY1

σY2

. Note that we

always have:

1

2
log+

(µ21σ
2
Y1

+ 1)(µ22σ
2
Y2

+ 1)− µ21µ
2
2ρ

2σ2Y1
σ2Y2

µ22σ
2
Y2

+ 1

+
1

2
log+

(µ21σ
2
Y1

+ 1)(µ22σ
2
Y2

+ 1)− µ21µ
2
2ρ

2σ2Y1
σ2Y2

µ21σ
2
Y1

+ 1

≤
1

2
log+ [(µ21σ

2
Y1

+ 1)(µ22σ
2
Y2

+ 1)− µ21µ
2
2ρ

2σ2Y1
σ2Y2

],

so whenever (R1, R2) is optimal, (8) will be an equality, while the equalities in
(6) and (7) generally can not be satisfied simultaneously (except when µ1µ2ρ =
0).Similarly, due to the continuity of the distortion measure, (5) will turn out to
be an equality whenever (R1, R2) is optimal. Since we are only interested in the
boundary of the achievable region, we will view (5), (8) as equations later on.
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Figure 2: Achievable Region
The thick dash-dot line shows the boundary given by (5), (6), (8) and the thick dash line
(5), (7), (8). The solid line is where min(R1 + R2) lies. The lines A, B, C together define
the boundary of the achievable rates (R1, R2) for a fixed distortion D. The region above the
thin dotted lines is achievable (R1, R2) for some pair of (µ2

1
, µ2

2
) that satisfies (5). The lower

convex envelop for all of them will be exactly the curve formed by A, B and C.

B. Special Case Study

1. Gaussian Multiterminal Source Coding with one distortion constraint:

If we let Y1 = X, the problem is reduced to that discussed in [6]. Apply σ2Y1
= σ2X ,

σ2Y2
= σ2X + σ2N2

, ρ2 =
σ2
X

σ2
X
+σ2

N2

and R2 = 1
2
log+ (µ22σ

2
Y2

+ 1) to (5), (6) and (8), we

get:

R1(D) ≥
1

2
log+

σ2X
D

(1− ρ2 + ρ22−2R2).

2. Noisy Wyner-Ziv problem:

The successively structured CEO problem [9] is formulated as the data fusion is
done in a serial fashion. Sensors communicate one to the next over rate-constraint
channels. Each sensor does the optimal encoding to the combination of the received
data from the previous sensor and its own observed data, which is exactly the case
when setting W2 = Y2, i.e. µ22 = ∞ in our problem. The main theorem in [9] is
termed “noisy” Wyner-Ziv problem. It’s given in [9] that:

RDW (D) =
1

2
log+

σ2X|Y2
− σ2X|Y1Y2

D − σ2
X|Y1Y2

Represent σ2X|Y2
and σ2X|Y1Y2

by σN1
, σN2

and σx, we get:

RDW (D) =
1

2
log+

σ4Xσ
4
N2

(σ2X + σ2N2
)[D(σ2Xσ

2
N1

+ σ2Xσ
2
N2

+ σ2N1
σ2N2

)− σ2Xσ
2
N1
σ2N2

]

While our solution gives:

R1 =
1

2
log+ [µ21(σ

2
Y1
−
ρ2σ2Y1

σ2Y2

σ2Y2

) + 1], subject to
1

D
=

1

σ2X
+

µ21
µ21σ

2
N1

+ 1
+

1

σ2N2



It’s easy to verify that R1(D) = RDW (D). It is worth noting that R1(D) corre-
sponds to point E2 in Fig. 2.

By further setting Y1 = X, we get R1(D) = RDW (D) = 1
2
log+

σ2
X
σ2
N2

(σ2
X
+σ2

N2
)D
, which is

a classical result first discovered by Wyner and Ziv in [10].

3. Extreme cases:

We consider two cases: ρ = 1 and ρ = 0 to get some intuitive view of the problem.

(a) ρ = 1

This is the case: Y1 = Y2 = X. (5)-(8) could be simplified to:

R1 ≥
1

2
log+

1 + σ2X(µ
2
1 + µ22)

1 + µ22σ
2
X

R2 ≥
1

2
log+

1 + σ2X(µ
2
1 + µ22)

1 + µ21σ
2
X

R1 +R2 ≥
1

2
log+ [1 + σ2X(µ

2
1 + µ22)], subject to

σ2X
D
≤ 1 + σ2X(µ

2
1 + µ22)

We directly get: R1 + R2 ≥
1
2
log+

σ2
X

D
. This is an interesting result, i.e. no

matter how we distribute rates between two sensors, it looks as if all rates are
assigned to one sensor. This phenomenon can be explained by the following
argument. Since two sensors have same observations, they can use a common
codebook which contains 2n(R1+R2) codewords (i.e. indices). Represent every
index in the form of A×B where A ∈ A, B ∈ B, |A| = 2nR1 , |B| = 2nR2 . Sensor
1 transmits part A and sensor 2 transmits part B (there is no confusion since
both sensors have the same observations and codebook). Fusion center then
combines A and B to get the original index. Apparently, this argument holds
for more general case when Y1 = Y2 = · · · = YL = X +N .

(b) ρ = 0

This is the case: Y1 = X +N1 and Y2 = N2 (or Y1 = N1, Y2 = N2), i.e. one of
the sensor observes pure noise. We have:

R1 ≥
1

2
log+ (µ21σ

2
Y1

+ 1), R2 ≥
1

2
log+ (µ22σ

2
N2

+ 1)

R1 +R2 ≥
1

2
log+ [(µ21σ

2
Y1

+ 1)(µ22σ
2
N2

+ 1)], subject to
σ2X
D
≤

µ21σ
2
Y1

+ 1

µ21σ
2
N1

+ 1

Obviously, distortion constraint does not rely on σ2N2
or µ2. To minimize the

rates, we set µ21 =
σ2
X
−D

D(σ2
X
+σ2

N1
)−σ2

X
σ2
N1

, µ22 = 0 and getR1 =
1
2
log+ (

σ4
X

D(σ2
X
+σ2

N1
)−σ2

X
σ2
N1

),

R2 = 0. So all rate should be assigned to sensor 1.

IV. Application to CEO problem

We apply the results in Section III to quadratic Gaussian CEO problem, i.e. trying to
find the minimal total rate R to achieve the distortion less than or equal to D. Define:

G(µ21, µ
2
2) = (µ21σ

2
Y1

+ 1)(µ22σ
2
Y2

+ 1)− µ21µ
2
1ρ

2σ2Y1
σ2Y2

+λ(1 +
µ21σ

2
X

µ21σ
2
N1

+ 1
+

µ22σ
2
X

µ22σ
2
N2

+ 1
−
σ2X
D

)



Use Lagrange Multiplier, we get:

min (R1 +R2) =



























1
2
log+

4σ2
X

Dσ2
N1

σ2
N2

( 1

D0
− 1

D
)2
, if D0 < D < min( 1

1

σ2
X

+ 1

σ2
N1

− 1

σ2
N2

, 1
1

σ2
X

+ 1

σ2
N2

− 1

σ2
N1

);

1
2
log+

σ4
X

D(σ2
X
+σ2

N1
)−σ2

X
σ2
N1

, if 1
1

σ2
X

+ 1

σ2
N1

− 1

σ2
N2

< D < σ2X and σ2N1
< σ2N2

;

1
2
log+

σ4
X

D(σ2
X
+σ2

N2
)−σ2

X
σ2
N2

, if 1
1

σ2
X

+ 1

σ2
N2

− 1

σ2
N1

< D < σ2X and σ2N1
> σ2N2

.

(9)

(9) shows that if the distortion constraint is loose or the total amount of available rate
is very limited, then the optima7 scheme is to use the more reliable sensor only. It’s easy
to see that the optimal rate allocation scheme corresponds to the points on line “B” (i.e.
segment from F1 to F2) in Fig.2, where

F1 = (1
2
log

4σ2
X
σ2
N2

Dσ2
N1

( 1

D0
− 1

D
)(2σ2

N2
+2σ2

X
−σ2

X
σ2
N2

( 1

D0
− 1

D
))
, 1

2
log

2σ2
N2

+2σ2
X
−σ2

X
σ2
N2

( 1

D0
− 1

D
)

σ4
N2

( 1

D0
− 1

D
)

),

F2 = (1
2
log

2σ2
N1

+2σ2
X
−σ2

X
σ2
N1

( 1

D0
− 1

D
)

σ4
N1

( 1

D0
− 1

D
)

, 1
2
log

4σ2
X
σ2
N1

Dσ2
N2

( 1

D0
− 1

D
)(2σ2

N1
+2σ2

X
−σ2

X
σ2
N1

( 1

D0
− 1

D
))
).

It is clear that the optimal rate allocation scheme generally is not unique except when
one of the latter two cases in (9) happens. In these cases, “B” reduces to a point on R1

axis (1
2
log+

σ4
X

D(σ2
X
+σ2

N1
)−σ2

X
σ2
N1

, 0) or R2 axis (0, 1
2
log+

σ4
X

D(σ2
X
+σ2

N2
)−σ2

X
σ2
N2

).

V. Conclusion

In this paper, we derive the achievable region of rates and distortion in a distributed
sensing system. Future work will be devoted to evaluating this result in quadratic gaus-
sian case when L > 2. Whether or not this achievable region contains all the legitimate
points of rates and distortion is still an open problem. The key to the complete solution
is to establish a converse coding theorem which is currently under investigation. This
converse coding theorem, if found, will be a generalization of the results in [6].

APPENDIX: Proof of the Theorem

Consider the following exhaustive error events.

E1 : (Xn, Y n
1 , Y

n
2 , · · · , Y

n
L ) are not jointly typical.

E2 :
L
⋃

i=1

E2,i,where E2,i = Ec
1

⋂

Fi, for i = 1, 2, · · · , L;Fi : (Y
n
i ,W

n
i ) not typical for all

W n
i ∈ C

(n)
i .

E3 : E
c
1

⋂

Ec
2

⋂

FL+1 where FL+1: there does not exist (W n
1 ,W

n
2 , · · · ,W

n
L ) such that

W n
i ∈ Bi(bi) and (W n

1 ,W
n
2 , · · · ,W

n
L ) is jointly typical.

E4 : E
c
1

⋂

Ec
2

⋂

Ec
3

⋂

FL+2 where FL+2 : (Ŵ
n
1 , Ŵ

n
2 , · · · , Ŵ

n
L ) not unique.

E5 : E
c
1

⋂

Ec
2

⋂

E3

⋂

Ec
4

⋂

FL+3 where FL+3 :
1
n
d(Xn, X̂n) > D + ε.

Let P̄e denote the probability of decoding error, where the bar over Pe indicates that the
probability is averaged over the ensemble codebooks. It is clear that

7We only address the optimal schem in the achievable region.



P̄e = P (
5
⋃

i=1

Ei) ≤
5
∑

i=1

P (Ei)

(i) P (E1)→ 0 as n→∞ by weak law of large numbers.

(ii) P (E2) ≤
L
∑

i=1

P (E2,i)

P (E2,i) = P (Ec
1 ∩ Fi) = P (Fi|E

c
1)P (Ec

1) ≤ P (Fi|E
c
1)

= P{(Y n
i ,W

n
i ) not typical for all W

n
i ∈ Ci|(Y

n
1 , Y

n
2 , · · · , Y

n
L ) typical}

= [1− P{(Y n
i ,W

n
i ) typical for randomly chosen W n

i |Y
n
i typical }]Mi

≤ [1− 2−n[I(Yi;Wi)+εi]]Mi ≤ exp(−Mi2
−n[I(Yi;Wi)+εi])→ 0

as n → ∞ if Mi ≥ 2n[I(Yi;Wi)+2εi], where εi could be made arbitrarily small as
n→∞.

(iii) P (E3)→ 0 as n→∞ by the Markov lemma on typicality.

(iv) P (E4) ≤ P (FL+2|
3
⋃

j=1

Ec
j ) = P{(Ŵ n

1 , Ŵ
n
2 , · · · , Ŵ

n
L )is not unique|

3
⋃

j=1

Ec
j}

≤
∑

A⊆IL

[(
∏

i∈A

Ni)2
−n(ΣA−εA)]→ 0 if

∏

i∈A

Ni ≤ 2n(ΣA−2εA) for all A ⊆ IL

Here WLOG suppose A = {i1, i2, · · · , ik}, then

ΣA ,
k
∑

l=1

I(WIL\Ak+1−l
;Wil); Al , {ik−l+1, ik−l+2, · · · , ik}, i.e. the last l elements of

A; εA can be made arbitrarily small as n→∞.

(v) P (E5) → 0 as n → ∞ by the jointly strong typicality of (Xn, Ŵ n
1 , Ŵ

n
2 , · · · , Ŵ

n
L ),

the definition of g and the boundedness of d (i.e. dmax <∞).

In summary, if Mi ≥ 2n[I[Yi;Wi]+2εi] and
∏

i∈A

Ni ≤ 2n(ΣA−2εA) for all i ∈ IL and A ⊆ IL,

then P̄e → 0 as n → ∞. So we have 2
n

∑

i∈A

Ri
=

∏

i∈A

Mi

∏

i∈A

Ni

≥ 2
n[

∑

i∈A

I(Yi;Wi)−ΣA−∆A]

, where

∆A , 2
∑

i∈A

εi + 2εA. Since ∆A can be arbitrarily small, it follows that

∑

i∈A

Ri ≥
∑

i∈A

I(Yi;Wi) − ΣA (10)

Since Wi → Yi → (X,YIL\{i},WIL\{i}), we have

I(YA;WA|WIL\A) = H(WA|WIL\A)−H(WA|WIL\A, YA)

=
k
∑

l=1

H(Wil|WIL\Ak+1−l
)−

k
∑

l=1

H(Wil|Yil)

=
k
∑

l=1

[H(Wil|WIL\Ak+1−l
)−H(Wil)]−

k
∑

l=1

[H(Wil|Yil)−H(Wil)]

= −
k
∑

l=1

I(Wil ;WIL\Ak+1−l
) +

k
∑

l=1

I(Wil ;Yil)

=
∑

j∈A

I(Yj;Wj) − ΣA



Here as before we suppose A = {i1, i2, · · · , ik}.
So we can rewrite (10) as

∑

i∈A

Ri ≥
∑

i∈A

I(YA;WA|WIL\A) for all A ⊆ IL. QED.
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