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Abstract

We show that any point in the Berger-Tung rate region can be achieved via

successive Wyner-Ziv coding. We generalize the concept of successive refinement

from single source coding to multisource coding, where we refer to it as distributed

successive refinement. The quadratic Gaussian CEO problem is used as an example

to illustrate some interesting aspects of distributed successive refinement.

I. Introduction

The problem of distributed source coding has assumed renewed interest in recent
years. Many practical compression schemes have been proposed for Slepian-Wolf coding
(e.g., [1] and the references therein) and Wyner-Ziv coding (e.g., [2] and the references
therein), whose performances are close to the fundamental theoretical bounds [3, 4].
Therefore, it is of interest to reduce the general distributed source coding problem to
these well-studied cases.

Given M i.i.d. discrete sources X1, X2, · · · , XM , the Slepian-Wolf rate region is the
union of all the rate vectors (R1, R2, · · · , RM) satisfying

∑

i∈A

Ri ≥ H(XA|XIM\A) ∀A ∈ IM ,

where IM = {1, 2, · · · ,M} and XA = {Xi}i∈A. The Slepian-Wolf reigon is a contra-
polymatroid with M ! vertices, where π is a permutation of IM , the coordinates of vertex
Rπ = (R1, · · · , RM) are given by

Rπ(1) = H(Xπ(1)),

Rπ(i) = H(Hπ(i)|Xπ(1), · · · , Xπ(i−1)) i = 2, · · · ,M.

It is known that vertices of the Slepian-Wolf region can be achieved with a complexity
significantly lower than that of a general point. It was observed in [5] that, by splitting
a source into two virtual sources, one can reduce the problem of coding an arbitrary
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point in a M -dimensional Slepian-Wolf region to that of coding a vertex of a (2M − 1)-
dimensional Slepian-Wolf region. This source-splitting idea has a dual in the problem of
coding for multiple access channels, which is referred as rate-splitting [6, 7]. We shall
show that a similar conclusion also holds in the general distributed lossy source coding.
Our approach is based on successive refinement instead of source splitting, since it does
not require the existence of the common randomness at the encoders and decoder (used
in [5][7] to generate a time sharing variable).

In Section II we prove that the Berger-Tung coding scheme can be reduced to a low
complexity successive Wyner-Ziv coding scheme. The duality between superposition cod-
ing for multiaccess communication and successive Wyner-Ziv coding is briefly discussed.
In Section III we introduce a concept called distributed successive refinement and then
apply it to the quadratic Gaussian CEO problem. We conclude the paper in Section IV.

II. Main Result

A general achievable rate region in distributed source coding is the Berger-Tung
region[8, 9]. For different models, the Berger-Tung region has different forms. In this
paper we use the model of the CEO problem[10], though many of our results also hold
for other models. The following is a brief description of the CEO problem.
{X(t)}∞t=1 is the target data sequence that is of interest to the decoder. This data

sequence cannot be observed directly. M encoders are deployed, which observe inde-
pendently corrupted versions of {X(t)}∞t=1. The data rate at which encoder i (i =
1, 2, · · · ,M) may communicate information about its observations to the decoder is lim-
ited to Ri bits per second. The encoders are not permitted to communicate with each
other; i.e., encoder i has to send data based solely on its own noisy observations {Yi(t)}

∞
t=1.

Finally, the decision {X̂(t)}∞t=1 is computed from the combined data at the decoder so
that a desired fidelity can be satisfied.

Definition 1. An M -tuple of rates (R1, · · · , RM) is said to be D-achievable if for any
ε > 0, there exists an n0 such that for n > n0 there exist encoders:

f
(n)
i : Yn

i → {1, 2, · · · , 2n(Ri+ε)} i = 1, · · · ,M

and a decoder:

g(n) : {1, 2, · · · , 2n(Ri+ε)} × · · · × {1, 2, · · · , 2n(RM+ε)} → X n

for which 1
n
E[

n
∑

t=1

d(X(t), X̂(t))] ≤ D + ε, where X̂n = g(n)(f
(n)
1 (Y n

1 ), · · · , f
(n)
M (Y n

M)) and

d(·, ·) : X × X → [0, dmax] is a given distortion measure. We let R(D) denote the set of
all D-achievable rate tuples.

Definition 2. Let

R(W1, · · · ,WM) =

{

(R1, · · · , RM) :
∑

i∈A

Ri ≥ I
(

YA;WA|WIM\A

)

,∀A ∈ IM

}

.

The Berger-Tung rate region with respect to distortion D is

RBT (D) = conv





⋃

(W1,··· ,WM )∈WD

R(W1, · · · ,WM)



 ,

where WD is the set of all (W1, · · · ,WM) satisfying the following properties:



(i) Wi → Yi →
(

X,YIM\{i},WIM\{i}

)

∀i ∈ IM .

(ii) There exists a function:
f : W1 × · · · ×WM → X

such that Ed(X, X̂) ≤ D, where X̂ = f(W1, · · · ,WM).

It was shown in [8, 9] that RBT (D) ⊆ R(D). Computing the Berger-Tung rate region
involves complicated optimization and convexification. Hence we shall only focus on
R(W1, · · · ,WM). We will see later that for the quadratic Gaussian case, the properties
of Berger-Tung rate region are determined completely by those of R(W1, · · · ,WM).

It was proved in [11, 12] that ifWi → Yi →
(

X,YIM\{i},WIM\{i}

)

for all i ∈ IM (which
we will assume throughout this paper) then R(W1, · · · ,WM) is a contra-polymatroid
with M ! vertices, where π is a permutation on IM , the coordinates of vertex Rπ =
(R1, · · · , RM) are given by

Rπ(1) = I(Yπ(1);Wπ(1)),

Rπ(i) = I(Yπ(i);Wπ(i)|Wπ(1), · · · ,Wπ(i−1)) i = 2, · · · ,M.

The convex region bounded by theseM ! vertices is called the dominant face ofR(W1, · · · ,WM)
on which we have

∑M

i=1Ri = I (YIM ;WIM ). For each of these M ! vertices, there exists a
low-complexity successive Wyner-Ziv coding scheme described as follows:

(i) Encoder π(1) employs conventional lossy source coding. Encoder π(i) (i = 2, · · · ,M)
employs Wyner-Ziv coding with Wπ(1), · · · ,Wπ(i−1) being the side information at
the decoder.

(ii) The decoder first decodes the codeword Wπ(1) from encoder π(1), then successively
decodes the codeword Wπ(i)(i = 2, · · · ,M) from encoder π(i) with side information
Wπ(1), · · · ,Wπ(i−1), 2 ≤ i ≤M .

Draper and Wornell [13] investigated this type of successive coding strategies in the
context of data fusion in tree-structured sensor networks.

Rate tuples on the dominant face other than these M ! vertices were previously known
to be attainable only by one of two methods. The first method known to achieve these
difficult rate tuples was time sharing among vertices. This approach can require as many
as M distributed source codes, each distributed source codes requiring M individual
codes (one conventional lossy source code and M − 1 Wyner-Ziv codes). Thus, this
scheme requires on the order of M 2 individual codes. The second approach to achieve
these rate tuples is joint decoding of all users. This is difficult to implement in practice,

since random codes have a decoding complexity of the order of 2nI(YIM ;WIM
), where n is

the block length.
One of our main results is that any rate tuple in R(W1, · · · ,WM) can be achieved by

a low complexity successive Wyner-Ziv coding scheme with one conventional lossy source
coding and at most 2M − 2 Wyner-Ziv codes. Without loss of generality, we need to
consider only rate tuples on the dominant face of R(W1, · · · ,WM).

Definition 3. A well-ordered permutation of {W1,W
′
1 · · · ,WM ,W

′
M} is a permutation

such that Wi appears after W
′
i for all i ∈ IM .



Theorem 1. For any rate tuple (R1, · · · , RM) on the dominant face of R(W1, · · · ,WM),
there exist (W ′

1, · · · ,W
′
M) satisfying W ′

i → Wi → (X,YIM ,WIM\i,W
′
IM\i

) and a well-

ordered permutation σ of {W1,W
′
1 · · · ,WM ,W

′
M} such that

Ri = I(Yi;W
′
i |{W

′
i}
−) + I(Yi;Wi|{Wi}

−) ∀i ∈ IM ,

where {W ′
i}
− denotes all the random variables beforeW ′

i in the permutation σ and {Wi}
−

is similarly defined. Furthermore, there exists at least one i ∈ IM such that Wi = W ′
i .

Proof: Due to the limitation of space, we prove the theorem only for the case M = 2.
Extension to the general case follows the approach similar to that in [6].

For any rate tuple (R1, R2) on the dominant face ofR(W1,W2), we have I(Y1;W1|W2) ≤
R1 ≤ I(Y1;W1), I(Y2;W2|W1) ≤ R2 ≤ I(Y2;W2), R1 + R2 = I(Y1, Y2;W1,W2). We can
always find a W ′

1 with W ′
1 → W1 → (X,Y1, Y2,W2) such that R2 = I(Y2;W2|W

′
1). Now

R1 = I(Y1, Y2;W1,W2)−R2

= I(Y1, Y2;W1,W2)− I(Y2;W2|W
′
1)

= I(Y1;W
′
1) + I(Y1;W1|W

′
1,W2).

Let σ = (W ′
1,W

′
2,W2,W1) and set W ′

2 = W2. The proof is complete. ¥
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Figure 1: Successive Wyner-Ziv coding

Intuitively, we can view W ′
i as a coarse quantization of Yi and view Wi as a fine

quantization of Yi (see Fig.1). Theorem 1 suggests the following successive Wyner-Ziv
coding scheme:

Encoder i first splitsRi into two pieces, r
1
i = I(Yi;W

′
i |{W

′
i}
−) and r2i = I(Yi;Wi|{Wi}

−).
Then it uses a Wyner-Ziv code with rate r1i to convey W ′

i to the decoder which has
side information {W ′

i}
− and uses Wyner-Ziv code with rate r2i to convey the refine-

ment Wi to decoder which has side information {Wi}
−. The decoder recovers the

{W ′
1,W1, · · · ,W

′
M ,WM} successively in the same order as the permutation σ. We can see

that this scheme requires one conventional lossy source code (reduced from a Wyner-Ziv
code, since at first the decoder has no side information) and at most 2M − 2 Wyner-Ziv
codes.

This successive Wyner-Ziv coding scheme has a dual in the multiple access commu-
nication (see Fig.2).

Encoder i first generates a low rate code X ′
i and then generates a high rate code Xi

by superposition. Only high rate code Xi is transmitted. Decoder successively recovers
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Figure 2: Multiaccess communication via superposition

the codewords according to a well-ordered permutation σ ′ of (X ′
1, X1, · · · , X

′
M , XM ) such

that

Ri = I(X ′
i;Y |{X

′
i}
−) + I(Xi;Y |{Xi}

−) ∀i ∈ IM .

Our superposition scheme is similar to the rate-splitting scheme introduced in [6].
Actually in [6] the output of the splitting function is exactly a superposition code. The
slight difference between these two schemes is that we don’t impose any independence
condition. Note:The independence condition is introduced in [6] to ensure that after
rate-splitting, the multiaccess channel with M independent input data streams becomes
a multiaccess channel with 2M−1 independent input data streams. Since with the excep-
tion of one user, each of the other users can control 2 inputs, no independence condition
is necessary for the 2 inputs controlled by one user. After removing this restriction, the
rate-splitting scheme in [6] and our superposition scheme become equivalent.

III. Distributed Successive Refinement

Now we introduce a concept called distributed successive refinement which can be
viewed as a generalization of the single source successive refinement [14] to the setting of
the CEO problem.

Definition 4. D∗(R1, · · · , RM) = min{D : (R1, · · · , RM) ∈ R(D)}.

Definition 5. We say there exists a successive refinement scheme from rate tuple (R1, · · · , RM)
to rate tuple (R1 +4R1, · · · , RM +4RM) if for any ε > 0, there exists an n0 such that
for n > n0 there exist encoders:

f
(n)
1,i : Yn

i → {1, 2 · · · , 2n(Ri+ε)} i = 1, · · · ,M,

f
(n)
2,i : Yn

i → {1, 2 · · · , 2n(4Ri+ε)} i = 1, · · · ,M,

and decoders:

g
(n)
1 : {1, 2 · · · , 2n(R1+ε)} × · · · × {1, 2 · · · , 2n(RM+ε)} → X n,

g
(n)
2 : {1, 2 · · · , 2n(R1+ε)} × {1, 2 · · · , 2n(4R1+ε)} × · · · × {1, 2 · · · , 2n(RM+ε)}

× {1, 2 · · · , 2n(4RM+ε)} → X n



such that

1

n
E[

n
∑

t=1

d(X(t), X̂1(t))] ≤ D∗(R1, · · · , RM) + ε,

1

n
E[

n
∑

t=1

d(X(t), X̂2(t))] ≤ D∗(R1 +4R1, · · · , RM +4RM) + ε,

where

X̂n
1 = g

(n)
1 (f

(n)
1,1 (Y

n
1 ), · · · , f

(n)
1,M (Y n

M)),

X̂n
2 = g

(n)
2 (f

(n)
1,1 (Y

n
1 ), f

(n)
2,1 (Y

n
1 ), · · · , f

(n)
1,M (Y n

M), f
(n)
2,M (Y n

M)),

and 4Ri ≥ 0 (i = 1, · · · ,M).

Now we proceed to discuss distributed refinement for the quadratic Gaussian CEO
problem. For simplicity, we only consider the case M = 2; all our results can be extended
to the general M case in a straightforward manner [15]. For the the quadratic Gaussian
CEO problem [16], we have Yi = X+Ni, where X ∼ N (0, σ2X), Ni ∼ N (0, σ2Ni

) (i = 1, 2)
andX,N1, N2 are all independent. The squared error distortion measure is used. Without
loss of generality, we suppose σ2N1

≤ σ2N2
. Let the auxiliary random variablesWi = Yi+Ti,

where Ti ∼ N (0, σ2Ti) and X,N1, N2, T1, T2 are all independent. We can compute the
Berger-Tung rate region explicitly as follows:

RBT (D) =
⋃

(σ2
T1
,σ2
T2
)∈Λ(D)

RBT (σ
2
T1
, σ2T2

)

where

Λ(D) =

{

(σ2T1
, σ2T2

) :
1

D
≤

1

σ2X
+

1

σ2N1
+ σ2T1

+
1

σ2N2
+ σ2T2

}

,

RBT (σ
2
T1
, σ2T2

) =

{

(R1, R2) : R1 ≥
1

2
log

(σ2X + σ2N1
+ σ2T1

)(σ2X + σ2N2
+ σ2T2

)− σ4X
σ2Xσ

2
T1

+ σ2N2
σ2T1

+ σ2T1
σ2T2

}

R2 ≥
1

2
log

(σ2X + σ2N1
+ σ2T1

)(σ2X + σ2N2
+ σ2T2

)− σ4X
σ2Xσ

2
T2

+ σ2N1
σ2T2

+ σ2T1
σ2T2

R1 +R2 ≥
1

2
log

(σ2X + σ2N1
+ σ2T1

)(σ2X + σ2N2
+ σ2T2

)− σ4X
σ2T1

σ2T2

}

.

Recently by developing the method of Oohama [17], Prabhakaran et al.[18] have shown
that for the quadratic Gaussian CEO problem, the Berger-Tung rate region is tight, i.e.,
R(D) = RBT (D).

Let ∂R(D) denote the boundary of R(D). We have D∗(R1, · · · , RM) = min{D :
(R1, · · · , RM) ∈ ∂R(D)}. In general, ∂R(D) can be partitioned into 3 pieces as shown
in Fig.3. Any point on part a can be represented as (I(Y1;W1), I(Y2;W2|W1)) for a
unique (W1,W2). Any point on part c can be represented as (I(Y1;W1|W2), I(Y2;W2))
for a unique (W1,W2). For all the points on part b, we have R1+R2 = I(Y1, Y2;W1,W2),
I(Y1;W1|W2) ≤ R1 ≤ I(Y1;W1), I(Y2;W2|W1) ≤ R2 ≤ I(Y2;W2) with

σ2Ti =







σ2
Ni

(

1
D0(L)

− 1
D

)

L

σ2
NL

+ 1
D
− 1
D0(L)

i ≤ L

∞ i > L

(1)



where L = max
{

k : k/σ2Nk
+ 1/D − 1/D0(k), 1 ≤ k ≤ 2

}

,D0(k) = (1/σ2X+
∑k

i=1 1/σ
2
Ni
)−1,

and D is the solution to the equation

R1 +R2 =
1

2
log+





σ2X
D

L
∏

i=1





L

σ2Ni

(

1
D0(L)

− 1
D

)







 ,

which is the minimum achievable distortion with rate pair (R1, R2). Hence, a unique
(W1,W2) is associated with each point (R1, R2) ∈ ∂R(D). Furthermore, since

⋃

D0(2)≤D≤σ2
X

∂R(D) = {(R1, R2) : R1 ≥ 0, R2 ≥ 0)},

we can conclude that any rate pair (R1, R2) is associated with a unique (W1,W2),
and thus a unique (σ2T1

, σ2T2
), which we shall denote by (W1(R1, R2),W2(R1, R2)) and

(σ2T1
(R1, R2), σ

2
T2
(R1, R2)), respectively. Moreover, ( 1

σ2
X

+ 1
σ2
N1
+σ2

T1
(R1,R2)

+ 1
σ2
N2
+σ2

T2
(R1,R2)

)−1

is the minimum distortion achievable with the rate pair (R1, R2) .
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Figure 3: Rate region for the quadratic Gaussian CEO problem

Lemma 1. (σ2T1
(R1, R2), σ

2
T2
(R1, R2)) ≥ (σ2T1

(R′1, R
′
2), σ

2
T2
(R′1, R

′
2)) if (R

′
1, R

′
2) ≥ (R1, R2).

Here (a, b) ≥ (a′, b′) means a ≥ a′ and b ≥ b′.

Proof: As shown in Fig.4, we partition the region {(R1, R2) : R1 ≥ 0, R2 ≥ 0)} into
three subregions: A,B,C. Any point in region A is in part a of ∂R(D) for some D, region
B and C are similarly defined. The boundary shared by two adjacent regions belongs to
both of them.

Let (W1,W2) = (W1(R1, R2),W2(R1, R2)), (W ′
1,W

′
2) = (W1(R

′
1, R

′
2),W2(R

′
1, R

′
2)).

Let (σ2T1
, σ2T2

) = (σ2T1
(R1, R2), σ

2
T2
(R1, R2)), (σ2

T ′

1
, σ2

T ′

2
) = (σ2T1

(R′1, R
′
2), σ

2
T2
(R′1, R

′
2)). If

both (R1, R2) and (R′1, R
′
2) are in region A, then we haveR1 = I(Y1;W1), R2 = I(Y2;W2|W1)

and R′1 = I(Y1;W
′
1), R2 = I(Y2;W

′
2|W

′
1). Since R′1 ≥ R1, it follows that σ

2
T1
≥ σ2

T ′

1
. Now

we have I(Y2;W
′
2|W1) ≥ I(Y2;W

′
2|W

′
1) ≥ I(Y2;W2|W1), which implies σ2T2

≥ σ2
T ′

2
. It can

be proved in a similar way for the case when both (R1, R2) and (R′1, R
′
2) are in region C.

Next consider the case when both (R1, R2) and (R′1, R
′
2) are in region B. Let D

be the minimum distortion that can be achieved by (R1, R2) and D′ be the minimum
distortion that can be achieved by (R′1, R

′
2). Since D ≥ D′, it follows from (1) that

(σ2T1
, σ2T2

) ≥ (σ2
T ′

1
, σ2

T ′

2
).



Now consider the general case when (R1, R2) and (R′1, R
′
2) are in different regions,

say (R1, R2) is in region A and (R′1, R
′
2) is in region B. Suppose the line segment that

connects (R1, R2) and (R′1, R
′
2) intersects the boundary of A and B at (R′′1, R

′′
2). Let

(σ2
T ′′

1
, σ2

T ′′

2
) = (σ2T1

(R′′1, R
′′
2), σ

2
T2
(R′′1, R

′′
2)). We have (σ2T1

, σ2T2
) ≥ (σ2

T ′′

1
, σ2

T ′′

2
) since both

(R1, R2) and (R′′1, R
′′
2) are in region A and (R′′1, R

′′
2) ≥ (R1, R2). Similarly, (σ2

T ′′

1
, σ2

T ′′

2
) ≥

(σ2
T ′

1
, σ2

T ′

2
) since both (R′′1, R

′′
2) and (R′1, R

′
2) are in region B and (R′1, R

′
2) ≥ (R′′1, R

′′
2).

Hence we have (σ2T1
, σ2T2

) ≥ (σ2
T ′

1
, σ2

T ′

2
). The other cases can be treated in a similar way.
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Figure 4: Distributed successive refinement for the quadratic Gaussian CEO problem

Let (W1,W2) = (W1(R1, R2),W2(R1, R2)), (W ′
1,W

′
2) = (W1(R

′
1, R

′
2),W2(R

′
1, R

′
2)).

Let (σ2T1
, σ2T2

) = (σ2T1
(R1, R2), σ

2
T2
(R1, R2)), (σ2

T ′

1
, σ2

T ′

2
) = (σ2T1

(R′1, R
′
2), σ

2
T2
(R′1, R

′
2)). If

(R′1, R
′
2) ≥ (R1, R2), by Lemma 1, we have (σ2T1

, σ2T2
) ≥ (σ2

T ′

1
, σ2

T ′

2
). Let (Ŵ1, Ŵ2) =

(W ′
1,W

′
2) + (4T1,4T2), where 4T1 ∼ N (0, σ2T1

− σ2
T ′

1
),4T2 ∼ N (0, σ2T2

− σ2
T ′

2
) are mu-

tually independent and independent of everything else. Note: (W1,W2) equals (Ŵ1, Ŵ2)
in distribution. We can regard (Ŵ1, Ŵ2) as a copy of (W1,W2) in the probability space
in which (W ′

1,W
′
2) is constructed.

Theorem 2. There exists a distributed successive refinement scheme from (R1, R2) to
(R′1, R

′
2) if (R′1, R

′
2) is on the line segment that connects (R1 + I(Y1;W

′
1|Ŵ1, Ŵ2), R2 +

I(Y2;W
′
2|W

′
1, Ŵ2)) and (R1 + I(Y1;W

′
1|Ŵ1,W

′
2), R2 + I(Y2;W

′
2|Ŵ1, Ŵ2)).

Proof: With rate pair (R1, R2), encoder 1 and encoder 2 can convey (Ŵ1, Ŵ2) to
the decoder. With additional rate pair (I(Y1;W

′
1|Ŵ1, Ŵ2), I(Y2;W

′
2|W

′
1, Ŵ2)), encoder

1 and encoder 2 can convey (W ′
1,W

′
2) to the decoder via successive refinement. Sim-

ilarly, with additional rate (I(Y1;W
′
1|Ŵ1,W

′
2), I(Y2;W

′
2|Ŵ1, Ŵ2)), encoder 1 and en-

coder 2 can also convey (W ′
1,W

′
2) to the decoder via successive refinement. There-

fore by timesharing1, with any additional rate pair on the line segment that connects
(I(Y1;W

′
1|Ŵ1, Ŵ2), I(Y2;W

′
2|W

′
1, Ŵ2)) and (I(Y1;W

′
1|Ŵ1,W

′
2), I(Y2;W

′
2|Ŵ1, Ŵ2)), encoder

1By an argument similar to that of Theorem 1, this timesharing can be replaced by a successive

Wyner-Ziv coding scheme.



1 and encoder 2 can convey (Ŵ1, Ŵ2) to decoder. Furthermore, it’s easy to check that

R1 +R2 + I(Y1;W
′
1|Ŵ1, Ŵ2) + I(Y2;W

′
2|W

′
1, Ŵ2)

= I(Y1, Y2;W1,W2) + I(Y1;W
′
1|Ŵ1, Ŵ2) + I(Y2;W

′
2|W

′
1, Ŵ2)

= I(Y1, Y2; Ŵ1, Ŵ2) + I(Y1;W
′
1|Ŵ1, Ŵ2) + I(Y2;W

′
2|W

′
1, Ŵ2)

= I(Y1, Y2;W
′
1,W

′
2) = R′1 +R′2.

Similarly, we have R1+R2+ I(Y1;W
′
1|Ŵ1, Ŵ2)+ I(Y2;W

′
2|W

′
1, Ŵ2) = R′1+R′2. The proof

is complete. ¥

As illustrated in Fig.4, there exists a distributed successive refinement scheme from
point s to any point in the dark region. The following results can be easily reduced from
Theorem 2. The proofs are omitted.

Corollary 1. If both (R1, R2) and (R′1, R
′
2) are in region A, then there exists a distributed

successive refinement scheme from (R1, R2) to (R′1, R
′
2) if R1 = R′1 and R′2 ≥ R2. If both

(R1, R2) and (R′1, R
′
2) are in region C, then there exists a distributed successive refinement

scheme from (R1, R2) to (R′1, R
′
2) if R

′
1 ≥ R1 and R2 = R′2.

Remark: If R2 =∞ and σ2N1
= 0, then the quadratic Gaussian CEO problem becomes

the Wyner-Ziv problem for a jointly Gaussian source. Corollary 1 implies the successive
refinability for the Wyner-Ziv problem of jointly Gaussian source [19], which further
includes the successive refinability of the Gaussian source as a special case [14].

Corollary 2. Suppose σ2N1
= σ2N2

. Then there exists a distributed successive refinement
scheme from (R,R) to (R′, R′) if R′ ≥ R.

IV. Conclusion

We discussed two closely related aspects of distributed source coding. Theorem 1 im-
plies that any coding scheme in the Berger-Tung rate region can be realized via successive
Wyner-Ziv coding. Roughly speaking, a high complexity distributed source code can be
decomposed into low complexity codes. Theorem 2 implies, at leat for the quadratic
Gaussian case, that a high rate distributed source code can be built upon a low rate code
via distributed successive refinement without any sacrifice of compression and estimation
efficiency.
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