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Abstract —

We propose a multiple description coding scheme

based on the quantization splitting method. This

scheme is able to achieve the whole EGC region. For

the Gaussian source, we show that any rate pair on

the dominant face of the EGC region is achievable

with three or fewer lattice quantizers.

I. Introduction

The problem of multiple descriptions (MD) has been inves-
tigated for many years. The MD literature is vast; see, for
example, [1–4].

Let {X(t)}∞t=1 be an i.i.d. random process with X(t) ∼
P (x) for all t. Let d(·, ·) : X × X → R+ be a distortion
measure.

Definition 1. The quintuple (R1, R2, D1, D2, D3) is called

achievable, if ∀ε > 0, ∃n0 such that ∀n > n0 there exist en-

coding functions:

f
(n)
i : Xn → C(n)

i log |C(n)
i | ≤ n(Ri + ε) i = 1, 2,

and decoding functions:

g
(n)
i : C(n)

i → Xn i = 1, 2

g
(n)
3 : C(n)

1 × C(n)
2 → Xn

such that for X̂n
i = g

(n)
i (f

(n)
i (Xn)), i = 1, 2, and for X̂n

3 =

g
(n)
3 (f

(n)
1 (Xn), f

(n)
2 (Xn)), we have

1

n
E

n
∑

t=1

d(X(t), X̂i(t)) < Di + ε i = 1, 2, 3.

The MD rate-distortion region, denoted by Q, is the set of all
achievable quintuples.

Definition 2 (EGC region [1]). (R1, R2, D1, D2, D3) ∈ Q
if there exist random variables X̂1, X̂2 and X̂3 jointly dis-

tributed with the generic source variable X such that

1. Ri ≥ I(X; X̂i), i = 1, 2;

2. R1 +R2 ≥ I(X; X̂1, X̂2, X̂3) + I(X̂1; X̂2);

3. Ed(X, X̂i) ≤ Di, i = 1, 2, 3.

We denote the EGC region by QEGC .

1This research is supported in part by NSF Grant CCR-033 0059
and a grant from the National Academies Keck Futures Initiative
(NAKFI).

Ozarow [2] showed that QEGC = Q for Gaussian sources.
Ahlswede [3] showed that the EGC region is also tight for the
“no excess sum-rate” case. Zhang and Berger [4] constructed
a counterexample for which QEGC $ Q.
Many practical MD schemes have been proposed [5–15].

Since it has been shown [16] that the Gaussian MD bound is
asymptotically tight in the high rate regime for all memoryless
continuous sources, the performance of MD schemes is often
compared with the optimum solutions for the quadratic mem-
oryless Gaussian case. The main contribution of this paper is
that we propose a lattice-based quantization system which is
able to achieve the whole Gaussian MD region.
The rest of this paper is divided into 3 sections. In Section

II, we propose a “quantization splitting”-based MD scheme,
which is able to achieve the whole EGC region. In Section III,
we show that for the quadratic Gaussian case, our scheme can
be realized with three or fewer lattice quantizers. We conclude
the paper in Section IV.

II. Achieving the EGC Region with
Quantization Splitting

We rewrite the EGC region in the following form2:

1. Ri ≥ I(X; X̂i), i = 1, 2;

2. R1+R2 ≥ I(X; X̂1, X̂2)+I(X̂1; X̂2)+I(X, X̂3|X̂1, X̂2).

The I(X, X̂3|X̂1, X̂2) term is the rate used for the superim-
posed refinement, which can be separated from other parts of
the EGC scheme. Henceforth, we shall refer to the following
region as the simplified EGC (SEGC) region:

1. Ri ≥ I(X; X̂i), i = 1, 2;

2. R1 +R2 ≥ I(X; X̂1, X̂2) + I(X̂1; X̂2).

The SEGC region is in general different from the EGC re-
gion since the I(X, X̂3|X̂1, X̂2) term is removed. But it cap-
tures the main ingredients of the EGC region. Furthermore, as
we will show later, the SEGC region is identical with the EGC
region for the quadratic Gaussian case. The typical shape of
the SEGC region is shown in Fig. 1. Since

I(X; X̂1) + I(X; X̂2)

= I(X; X̂1, X̂2) + I(X̂1; X̂2)− I(X̂1; X̂2|X)
≤ I(X; X̂1, X̂2) + I(X̂1; X̂2),

the sum-rate constraint is always effective. We call
{

(R1, R2) : R1 +R2 = I(X; X̂1, X̂2) + I(X̂1; X̂2),

Ri ≥ I(X; X̂i), i = 1, 2
}

2Rigorously speaking, in order to determine the EGC region,
we need to take the union over all feasible joint distributions
P (x, x̂1, x̂2, x̂3) and then convexify the resulting region. In order to
simplify the analysis, we only consider the EGC region with respect
to a fixed joint distribution P (x, x̂1, x̂2, x̂3).
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Figure 1: A typical SEGC region.

the dominant face of the SEGC region. Any rate pair inside
the SEGC region is inferior to some rate pair on the dominant
face in the sense of compression efficiency. Hence in searching
for the optimal scheme, we can restrict our attention to rate
pairs on the dominant face without loss of generality.
The dominant face of the SEGC region has two vertices,

which are given respectively by

V1: R1 = I(X; X̂1), R2 = I(X, X̂1; X̂2);

V2: R1 = I(X, X̂2; X̂1), R2 = I(X; X̂2).

By symmetry, we shall only consider V1. We first outline
two schemes that can achieve V1.

1. Successive Encoding Scheme: Encoder 1 indepen-

dently generates 2nI(X;X̂1) codewords {X̂n
1 (j)}2

nI(X;X̂1)

j=1

according to the marginal distribution P (x̂1). En-

coder 2 independently generates 2nI(X,X̂1;X̂2) codewords

{X̂n
2 (k)}2

nI(X,X̂1;X̂2)

k=1 according to the marginal distribu-
tion P (x̂2).

Encoding Procedure: Given Xn, encoder 1 finds the
codeword X̂n

1 (j
∗) such that Xn and X̂n

1 (j
∗) are jointly

typical, then encoder 2 finds the codeword X̂n
2 (k

∗) such
that X̂n

2 (k
∗) is jointly typical with Xn and X̂n

1 (j
∗). In-

dex j∗ is transmitted to the decoder through channel
1 and index k∗ is transmitted to the decoder through
channel 2.

For this coding scheme, encoder 1 does the encoding
first and then encoder 2. The main complexity of this
scheme is on encoder 2 since it needs to construct a
codebook that covers the (X, X̂1)-space instead of just
the X-space. So intuitively, for this scheme, encoder 1
is a simple quantizer while encoder 2 is a complicated
quantizer.

2. Two-Stage Encoding Scheme: We write R2 as R2 =
I(X; X̂2) + I(X̂1; X̂2|X).
Encoder 1 independently generates 2nI(X;X̂1) code-

words {X̂n
1 (j)}2

nI(X;X̂1)

j=1 according to the marginal dis-
tribution P (x̂1). Encoder 2 independently generates

2nI(X̂1;X̂2|X) codebooks, with each codebook contain-

ing 2nI(X;X̂2) codewords. That is, codebook i has code-

words {X̂n
2 (i, k)}2

nI(X;X̂2)

k=1 , i = 1, 2, · · · , 2nI(X̂1;X̂2|X).

Encoding Procedure:

(a) Given Xn, encoder 1 finds the codeword X̂n
1 (j

∗)
such that Xn and X̂n

1 (j
∗) are jointly typical.

Encoder 2 finds, in each codebook i, a code-
word X̂n

2 (i, k
∗
i ) such that X̂

n
2 (i, k

∗
i ) is jointly typ-

ical with Xn, i = 1, 2, · · · , 2nI(X̂1;X̂2|X). En-

coder 2 then forms a new codebook with these
2nI(X̂1;X̂2|X) selected codewords.

(b) In this newly-formed codebook, encoder 2 finds
a codeword X̂n

2 (i
∗, k∗i∗) such that X̂

n
2 (i

∗, k∗i∗) is
jointly typical with Xn and X̂n

1 (j
∗).

Index j∗ is transmitted to the decoder through channel
1. Indices i∗ and k∗i∗ are transmitted to the decoder
through channel 2.

Encoder 1 is essentially the same as the one in the suc-
cessive encoding scheme. The main difference is on
encoder 2. Instead of constructing a giant codebook
that covers the (X, X̂1)-space in the successive encoding
scheme, encoder 2 , in the two-stage encoding scheme,

generates 2nI(X̂1;X̂2|X) small codebooks, each of which
is able to cover the X-space. From the practical view-
point, it is often easier to construct a bunch of sim-
ple quantizers than a single complicated quantizer. But
the two-stage coding scheme requires an additional com-
plexity on the selection of quantizers. That is, encoder
2 need select the output of one quantizer to transmit,
and such a selection is determined by not only Xn, but
also the output of encoder 1.

Now we proceed to study an arbitrary rate pair on the
dominant face of the SEGC region. We shall outline four
coding schemes.

1. Time Sharing: Any point on the dominant face can be
viewed as a linear combination of V1 and V2. Hence the
coding scheme for the rate pair on the dominant face
follows directly from timesharing the encoding schemes
for V1 and V2.

2. Joint Encoding [1]: Encoder 1 generates 2nR1 code-

words {X̂n
1 (j)}2

nR1

j=1 according to the marginal distri-
bution P (x̂1). Encoder 2 generates 2nR2 codewords

{X̂n
2 (k)}2

nR2

k=1 according to the marginal distribution
P (x̂2).

Encoding Procedure: Given Xn, encoder 1 and encoder
2 find the codewords X̂n

1 (j
∗) and X̂n

2 (k
∗) such that Xn,

X̂n
1 (j

∗) and X̂n
2 (k

∗) are jointly typical. Index j∗ is
transmitted to the decoder through channel 1 and index
k∗ is transmitted to the decoder through channel 2.

3. Two-Stage Encoding: Encoder 1 independently gen-

erates 2n[R1−I(X;X̂1)] codebooks, with each code-

book containing 2nI(X;X̂1) codewords, i.e., code-

book i contains codewords {X̂n
1 (i, j)}2

nI(X;X̂1)

j=1 , i =

1, 2, · · · , 2n[R1−I(X;X̂1)]. Similarly, encoder 2 indepen-

dently generates 2n[R2−I(X;X̂2)] codebooks, with each

codebook containing 2nI(X;X̂2) codewords. That is,

codebook k has codewords {X̂n
2 (k, l)}2

nI(X;X̂2)

k=1 , k =

1, 2, · · · , 2n[R2−I(X;X̂2)].

Encoding Procedure:

(a) Given Xn, encoder 1 finds, in each codebook i, a
codeword X̂n

1 (i, j
∗
i ) such that X̂

n
1 (i, j

∗
i ) is jointly

typical with Xn, i = 1, 2, · · · , 2n[R1−I(X;X̂1)]. En-
coder 1 then forms a new codebook with these
2n[R1−I(X;X̂1)] selected codewords. Similarly en-
coder 2 finds, in each codebook k, a code-
word X̂n

2 (k, l
∗
k) such that X̂

n
2 (k, l

∗
k) is jointly typ-



ical with Xn, i = 1, 2, · · · , 2n[R2−I(X;X̂2)]. En-
coder 2 then forms a new codebook with these
2n[R2−I(X;X̂2)] selected codewords.

(b) In these two newly-formed codebooks, encoder
1 and encoder 2 find codewords X̂n

1 (i
∗, j∗i∗)

and X̂n
2 (k

∗, l∗k∗) such that X
n, X̂n

1 (i
∗, j∗i∗) and

X̂n
2 (k

∗, l∗k∗) are jointly typical.

Indices i∗ and j∗i∗ are transmitted to the decoder
through channel 1. Indices k∗ and l∗k∗ are transmitted
to the decoder through channel 2.

The second stage of this scheme is similar to that of the
joint encoding scheme, except that the size of its search

space is 2n[R1+R2−I(X;X̂1)−I(X;X̂2)] = 2nI(X̂1;X̂2|X)

while the size of the search space for the joint encoding

scheme is 2n(R1+R2) = 2n[I(X;X̂1,X̂2)+I(X̂1;X̂2)]. But this
reduction in the size of the search space is at the cost
of introducing an additional encoding stage—the first
stage.

4. Quantization Splitting: We need the following result
before presenting the coding scheme.

Lemma 1. For any rate pair (R1, R2) on the dominant

face of the SEGC region, we can find X̂ ′
2 with (X, X̂1)→

X̂2 → X̂ ′
2 such that

R1 = I(X, X̂ ′
2; X̂1),

R2 = I(X, X̂ ′
2) + I(X, X̂1; X̂2|X̂ ′

2),

Symmetrically, we can find X̂ ′
1 with (X, X̂2) → X̂1 →

X̂ ′
1 such that

R1 = I(X, X̂ ′
1) + I(X, X̂2; X̂1|X̂ ′

1),

R2 = I(X, X̂ ′
1; X̂2).

Proof. We shall only prove the first form, the other one
follows by symmetry.

If we let X̂ ′
2 = constant, then

R1 = I(X; X̂1), R2 = I(X, X̂1; X̂2),

which corresponds to Vertex 1.

If we let X̂ ′
2 = X̂2, then

R1 = I(X, X̂2; X̂1), R2 = I(X, X̂2),

which corresponds to Vertex 2.

Clearly, we can construct a class of transition probabil-
ities Pε(x̂

′
2|x̂2) indexed by ε such that I(X; X̂

′
2) changes

continuously from 0 to I(X; X̂2) as ε changes from 0 to
1. Now we only need to verify

R1 +R2 = I(X; X̂1, X̂2) + I(X̂1; X̂2).

It follows that

R1 +R2

= I(X, X̂ ′
2; X̂1) + I(X; X̂

′
2) + I(X, X̂1; X̂2|X̂ ′

2)

= I(X, X̂ ′
2; X̂1) + I(X; X̂

′
2) + I(X; X̂2|X̂ ′

2)

+I(X̂1; X̂2|X, X̂ ′
2)

= I(X, X̂2, X̂
′
2; X̂1) + I(X; X̂2, X̂

′
2).

Since (X, X̂1)→ X̂2 → X̂ ′
2, we have

I(X, X̂2, X̂
′
2; X̂1) + I(X; X̂2, X̂

′
2)

= I(X, X̂2; X̂1) + I(X; X̂2)

= I(X, X̂1) + I(X; X̂2) + I(X̂1; X̂2|X)
= I(X; X̂1, X̂2) + I(X̂1; X̂2),

which completes the proof.

Now we are ready to state the coding scheme based on
the quantization splitting.

We will only discuss the first representation, i.e.,

R1 = I(X, X̂ ′
2; X̂1),

R2 = I(X, X̂ ′
2) + I(X, X̂1; X̂2|X̂ ′

2).

Encoder 1 independently generates 2nI(X,X̂
′
2;X̂1) code-

words {X̂n
1 (i)}2

nI(X,X̂′
2;X̂1)

i=1 according to the marginal
distribution P (x̂1). Encoder 2 independently gen-

erates 2nI(X;X̂′
2) codewords {X̂ ′

2

n
(j)}2nI(X;X̂′

2)

j=1 accord-
ing to the marginal distribution P (x̂′2). For each

codeword X̂ ′
2

n
(j), encoder 2 independently generates

2nI(X,X̂1;X̂2|X̂
′
2) codewords {X̂n

2 (j, k)}2
nI(X,X̂1;X̂2|X̂

′
2)

k=1

according to the marginal conditional distribution
P (x̂2|x̂′2).
Encoding Procedure: Given Xn, encoder 2 finds the
codeword X̂ ′

2

n
(j∗) such thatXn and X̂ ′

2

n
(j∗) are jointly

typical. Then encoder 1 finds the codeword X̂n
1 (i

∗) such

that X̂n
1 (i

∗) is jointly typical with Xn and X̂ ′
2

n
(j∗).

Finally, encoder 2 finds the codeword X̂n
2 (j

∗, k∗) such
that X̂n

2 (j
∗, k∗) is jointly typical with Xn, X̂n

1 (i
∗) and

X̂ ′
2

n
(j∗). Index i∗ is transmitted to the decoder through

channel 1. Indices j∗ and k∗ are transmitted to the
decoder through channel 2.

This approach is a natural generalization of the suc-
cessive encoding scheme for the vertices of the SEGC
region.

We can view X̂ ′
2 as a coarse description of X and view

X̂2 as a fine description of X. The idea of introducing
an auxiliary coarse description to convert a joint coding
scheme to a successive coding scheme has been widely
used in the distributed source coding problem [17,18].

III. Gaussian Case

In the preceding section, we gave an information theoretic
analysis of the SEGC region. We shall apply those general
results to the quadratic Gaussian case. As we will see, those
general results possess particularly simple interpretations in
the Gaussian case.

Let {X(t)}∞t=1 be an i.i.d. Gaussian process with X(t) ∼
N (0, σ2

X) for all t. Let d(·, ·) be the squared distortion mea-
sure. It was shown in [1, 2] that (R1, R2, D1, D2, D3) ∈ Q if
and only if

Ri ≥ 1

2
log

σ2
X

Di

, i = 1, 2,

R1 +R2 ≥ 1

2
log

σ2
X

D3
+
1

2
logψ(D1, D2, D3),



where

ψ(D1, D2, D3)

=















1, D3 < D1 +D2 − σ2
X

σ2XD3
D1D2

, D3 >
(

1
D1
+ 1

D2
− 1

σ2
X

)−1

(σ2X−D3)
2

(σ2
X
−D3)2−[

√
(σ2

X
−D1)(σ

2
X
−D2)−

√
(D1−D3)(D2−D3)]2

, o.w.

The case D3 < D1 + D2 − σ2
X and the case D3 >

(

1/D1 + 1/D2 − 1/σ2
X

)−1
are degenerated. It is easy to

verify that for any (R1, R2, D1, D2, D3) ∈ Q with D3 <
D1 + D2 − σ2

X , we can find D∗
1 ≤ D1, D∗

2 ≤ D2

such that (R1, R2, D
∗
1 , D

∗
2 , D3) ∈ Q and D3 = D∗

1 +
D∗

2 − σ2
X . Similarly, for any (R1, R2, D1, D2, D3) ∈

Q with D3 >
(

1/D1 + 1/D2 − 1/σ2
X

)−1
, we can find

D∗
3 =

(

1/D1 + 1/D2 − 1/σ2
X

)−1
< D3 such that

(R1, R2, D1, D2, D
∗
3) ∈ Q.

An alternative way is to write the rate-distortion region
in the D − R form instead of the R − D form. That is,
(R1, R2, D1, D2, D3) ∈ Q if and only if

Di ≥ σ2
X2

−2Ri , i = 1, 2,

D3 ≥ σ2
X2

−(R1+R2)

1− |
√
Π−

√
∆|+2

where Π = (1 − D1/σ
2
X)(1 − D2/σ

2
X), ∆ = D1D2/σ

4
X −

2−2(R1+R2), and |x|+ = max(x, 0). Again, the case
√
Π −√

∆ < 0 (i.e., σ2
X + σ2

X2
−2(R1+R2) < D1 + D2) is degener-

ated since we can find D∗
1 ≤ D1 and D∗

2 ≤ D2 such that
σ2
X + σ

2
X2

−2(R1+R2) = D∗
1 +D

∗
2 and D

∗
i ≥ σ2

X2
−2Ri , i = 1, 2.

Henceforth we shall only consider the case
(

1/D1 + 1/D2 − 1/σ2
X

)−1 ≥ D3 ≥ D1 + D2 − σ2
X . Only

in this subregion, D1, D2 and D3 are all effective. Let
U = X + T0 + T1, W = X + T0 + T2, where (T1, T2), T0, X
are zero-mean, jointly Gaussian and independent, and the
covariance matrix of (T0, T1, T2) is

CT =





σ2
T0

0 0
0 σ2

T1
−σT1σT2

0 −σT1σT2 σ2
T2



 .

Let

X̂1 = E(X|U) = σ2
X

σ2
X + σ

2
T0
+ σ2

T1

U,

X̂2 = E(X|W ) = σ2
X

σ2
X + σ

2
T0
+ σ2

T2

W,

X̂3 = E(X|X̂1, X̂2) = αX̂1 + βX̂2,

where

α =
σT2(σ

2
X + σ

2
T0
+ σ2

T1
)

(σT1 + σT2)(σ
2
X + σ

2
T0
)
,

β =
σT1(σ

2
X + σ

2
T0
+ σ2

T2
)

(σT1 + σT2)(σ
2
X + σ

2
T0
)
.

By setting E(X − X̂i)
2 = Di, i = 1, 2, 3, we get

σ2
T0

=
D3σ

2
X

σ2
X −D3

,

σ2
Ti

=
Diσ

2
X

σ2
X −Di

− D3σ
2
X

σ2
X −D3

, i = 1, 2.

Now it is easy to verify that

I(X; X̂i) =
1

2
log

σ2
X

Di

, i = 1, 2,

and

I(X; X̂1, X̂2) + I(X̂1; X̂2)

=
1

2
log

σ2
X

D3
+
1

2
logψ(D1, D2, D3).

Hence for the quadratic Gaussian case, the SEGC region is
the same as the EGC region and there is no need to introduce
X̂3 (more precisely, X̂3 can be represented as a deterministic
function of X̂1 and X̂2).
Now we proceed to study the coding scheme for V1 of the

SEGC region. Firstly, we can compute that

E(X̂2|X, X̂1) = a1X + a2X̂1,

E(E(X̂2|X, X̂1)|X̂2) = a3X̂2,

var(E(X̂2|X, X̂1)|X̂2)

=
σ4
X

(σ2
X + σ

2
T0
+ σ2

T2
)2

[

σ2
X +

(σ2
T0
− σT1σT2)2

σ2
T0
+ σ2

T1

]

−σ
4
X

[

σ2
Xσ

2
T1
+ σ2

Xσ
2
T0
+ (σ2

T0
− σT1σT2)2

]2

(σ2
T0
+ σ2

T1
)2(σ2

X + σ
2
T0
+ σ2

T2
)3

,

where

a1 =
σ2
X(σ

2
T1
+ σT1σT2)

(σ2
X + σ

2
T0
+ σ2

T2
)(σ2

T0
+ σ2

T1
)
,

a2 =
(σ2

T0
− σT1σT2)(σ2

X + σ
2
T0
+ σ2

T1
)

(σ2
X + σ

2
T0
+ σ2

T2
)(σ2

T0
+ σ2

T1
)
,

a3 =
σ2
Xσ

2
T1
+ σ2

Xσ
2
T0
+ σ4

T0
− 2σ2

T0
σT1σT2 + σ

2
T1
σ2
T2

(σ2
T0
+ σ2

T1
)(σ2

X + σ
2
T0
+ σ2

T2
)

.

For Vertex 1, we have

R1 = I(X; X̂1),

R2 = I(X, X̂1; X̂2)

= I(E(X̂2|X, X̂1); X̂2)

= I(E(X̂2|X, X̂1);E(E(X̂2|X, X̂1)|X̂2)),

where the third equality follows from the fact that (X, X̂1)→
E(X̂2|X, X̂1)→ X̂2 form a Markov chain. Actually the above
equations imply3 that encoder 2, instead of generating a code-
book that covers the (X, X̂1)-space, just needs a codebook
that covers the E(X̂2|X, X̂1)-space, which is considerably sim-
pler. The system diagram of the above coding scheme is shown
in Fig. 2.
Now we shall study an arbitrary rate pair on the domi-

nant face of the SEGC region. Here we adopt the successive
encoding scheme based on the quantization splitting method.
Let V = W + T3 with T3 ∼ N (0, σ2

T3
) independent of ev-

erything else. Let

X̂ ′
2 = E(X|V ) = σ2

X

σ2
X + σ

2
T0
+ σ2

T2
+ σ2

T3

V,

∆X = X − E(X|X̂ ′
2) = X − X̂ ′

2,

∆X̂1 = X̂1 − E(X̂1|X̂ ′
2) = X̂1 − b1X̂ ′

2,

∆X̂2 = X̂2 − E(X̂2|X̂ ′
2) = X̂2 − X̂ ′

2.

3For a more rigorous justification, one can invoke the Markov
lemma [19].
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Figure 2: Quantization scheme for V1.

Note: ∆X,∆X̂1 and ∆X̂2 are independent of X̂
′
2.

We can compute that

E(X̂1|X, X̂ ′
2) = b2X + b3X̂

′
2,

E(E(X̂1|X, X̂ ′
2)|X̂1) = b4X̂1,

E(∆X̂2|∆X,∆X̂1) = b5∆X + b6∆X̂1,

E(E(∆X̂2|∆X,∆X̂1)|∆X̂2) = b7∆X̂2,

and

var(X|X̂ ′
2) = E(∆X)2 =

σ2
X(σ

2
T0
+ σ2

T2
+ σ2

T3
)

σ2
X + σ

2
T0
+ σ2

T2
+ σ2

T3

,

var(E(X̂1|X, X̂ ′
2)|X̂1)

=
σ4
X

(σ2
X + σ

2
T0
+ σ2

T1
)2

[

σ2
X +

(σ2
T0
− σT1σT2)2

σ2
T0
+ σ2

T2
+ σ2

T3

]

−σ
4
X

[

σ2
X(σ

2
T0
+ σ2

T2
+ σ2

T3
) + (σ2

T0
− σT1σT2)2

]2

(σ2
T0
+ σ2

T2
+ σ2

T3
)2(σ2

X + σ
2
T0
+ σ2

T1
)3

,

var(E(∆X̂2|∆X,∆X̂1)|∆X̂2)

=
1

(

E(∆X)2E(∆X̂1)2 − (E(∆X∆X̂1))2
)2

×
[

E(∆X)2
(

E(∆X∆X̂2)E(∆X̂1)
2

−E(∆X̂1∆X̂2)E(∆X∆X̂1)
)2

+E(∆X̂1)
2
(

E(∆X̂1∆X̂2)E(∆X)
2

−E(∆X∆X̂1)E(∆X∆X̂2)
)2

+2E(∆X∆X̂1)
(

E(∆X∆X̂2)E(∆X̂1)
2

−E(∆X̂1∆X̂2)E(∆X∆X̂1)
)

×
(

E(∆X̂1∆X̂2)E(∆X)
2

−E(∆X∆X̂1)E(∆X∆X̂2)
)

− 1
(

E(∆X)2E(∆X̂1)2 − (E(∆X∆X̂1))2
)2

E(∆X̂2)2

×
(

(E(∆X∆X̂2))
2E(∆X̂1)

2 + (E(∆X̂1∆X̂2))
2E(∆X)2

−2E(∆X∆X̂1)E(∆X∆X̂2)E(∆X̂1∆X̂2)
)2

,

where

b1 = X̂1 −
σ2
X + σ

2
T0
− σT1σT2

σ2
X + σ

2
T0
+ σ2

T1

,

b2 =
σ2
X(σ

2
T2
+ σ2

T3
+ σT1σT2)

(σ2
X + σ

2
T0
+ σ2

T1
)(σ2

T0
+ σ2

T2
+ σ2

T3
)
,

b3 =
(σ2

T0
− σT1σT2)(σ2

X + σ
2
T0
+ σ2

T2
+ σ2

T3
)

(σ2
X + σ

2
T0
+ σ2

T1
)(σ2

T0
+ σ2

T2
+ σ2

T3
)
,

b4 =
σ2
X(σ

2
T0
+ σ2

T2
+ σ2

T3
) + (σ2

T0
− σT1σT2)2

(σ2
X + σ

2
T0
+ σ2

T1
)(σ2

T0
+ σ2

T2
+ σ2

T3
)

,

b5 =
E(∆X∆X̂2)E(∆X̂1)

2 − E(∆X̂1∆X̂2)E(∆X∆X̂1)

E(∆X)2E(∆X̂1)2 − (E(∆X∆X̂1))2
,

b6 =
E(∆X̂1∆X̂2)E(∆X)2 − E(∆X∆X̂1)E(∆X∆X̂2)

E(∆X)2E(∆X̂1)2 − (E(∆X∆X̂1))2
,

b7 =
1

E(∆X)2E(∆X̂1)2E(∆X̂2)2 − (E(∆X∆X̂1))2E(∆X̂2)2

×
(

(E(∆X∆X̂2))
2E(∆X̂1)

2 + (E(∆X̂1∆X̂2))
2E(∆X)2

−2E(∆X∆X̂1)E(∆X∆X̂2)E(∆X̂1∆X̂2)
)

,

and

E(∆X)2 =
σ2
X(σ

2
T0
+ σ2

T2
+ σ2

T3
)

σ2
X + σ

2
T0
+ σ2

T2
+ σ2

T3

,

E(∆X̂1)
2 =

σ4
X

σ2
X + σ

2
T0
+ σ2

T1

− σ4
X(σ

2
X + σ

2
T0
− σT1σT2)2

(σ2
X + σ

2
T0
+ σ2

T1
)2(σ2

X + σ
2
T0
+ σ2

T2
+ σ2

T3
)
,

E(∆X̂2)
2 =

σ4
X

σ2
X + σ

2
T0
+ σ2

T2

− σ4
X

σ2
X + σ

2
T0
+ σ2

T2
+ σ2

T3

,

E(∆X∆X̂1) =
σ4
X

σ2
X + σ

2
T0
+ σ2

T1

− σ4
X(σ

2
X + σ

2
T0
− σT1σT2)

(σ2
X + σ

2
T0
+ σ2

T1
)(σ2

X + σ
2
T0
+ σ2

T2
+ σ2

T3
)
,

E(∆X∆X̂2) =
σ4
X

σ2
X + σ

2
T0
+ σ2

T2

− σ4
X

σ2
X + σ

2
T0
+ σ2

T2
+ σ2

T3

,

E(∆X̂1∆X̂2) =
σ4
X(σ

2
X + σ

2
T0
− σT1σT2)

(σ2
X + σ

2
T0
+ σ2

T1
)(σ2

X + σ
2
T0
+ σ2

T2
)

− σ4
X(σ

2
X + σ

2
T0
− σT1σT2)

(σ2
X + σ

2
T0
+ σ2

T1
)(σ2

X + σ
2
T0
+ σ2

T2
+ σ2

T3
)
.

By Lemma 1, we have

R1 = I(X, X̂ ′
2; X̂1)

= I(E(X̂1|X, X̂ ′
2); X̂1)

= I(E(X̂1|X, X̂ ′
2);E(E(X̂1|X, X̂ ′

2)|X̂1)),

R2 = I(X; X̂ ′
2) + I(X, X̂1; X̂2|X̂ ′

2)

= I(X; X̂ ′
2) + I(∆X,∆X̂1; ∆X̂2|X̂ ′

2)

= I(X; X̂ ′
2) + I(∆X,∆X̂1; ∆X̂2)

= I(X; X̂ ′
2) + I(E(∆X̂2|∆X,∆X̂1);∆X̂2)

= I(E(∆X̂2|∆X,∆X̂1);E(E(∆X̂2|∆X,∆X̂1)|∆X̂2))

+I(X; X̂ ′
2).

We have used the fact that (X, X̂ ′
2) → E(X̂1|X, X̂ ′

2) → X̂1

and (∆X,∆X̂1)→ E(∆X̂2|∆X,∆X̂1)→ ∆X̂2.



The system diagram of the above scheme is shown in Fig.
3.
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Figure 3: Quantization scheme for an arbitrary rate pair.

IV. Conclusion

Although we have adopted an information theoretic approach,
all of our results can be interpreted from the perspective of
lattice quantization [20–23]. A more systematic approach
based on the connection between the Gram-Schmidt orthogo-
nalization and sequential (dithered) quantization can be found
in [24].
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