Achieving the Multiple Description Rate-Distortion Region with Lattice Quantization

Jun Chen, Chao Tian, Toby Berger, Sheila Hemami
ECE, Cornell University
Ithaca, NY

CISS March 16-18, 2005

Outline

- Practical Multiple Description Schemes.
- Successive Quantization and Quantization Splitting.
- Gaussian Multiple Description Rate-Distortion Region.
- Gram-Schmidt Orthogonalization.
- Simulate GS Orthogonalization by Sequential Quantization.
- Conclusion.

Practical Multiple Description Schemes

- MD Scalar/Vector Quantization: Vaishampayan et al.
\diamond Index Assignment \diamond Lattice/Sublattice
- Entropy-Coded Dithered Lattice Quantizers (ECDQs): FrankDayan \& Zamir 02.
\diamond Amenable to Analysis
- Correlating Transforms: Orchard et al. 97, Pradhan \& Ramchandran 00, Goyal \& Kovačević 01.
\diamond Vector Sources

EGC* Region

$$
\begin{aligned}
R_{i} & \geq I\left(X ; U_{i}\right), \quad i=1,2 \\
R_{1}+R_{2} & \geq I\left(X ; U_{1}\right)+I\left(X ; U_{2}\right)+I\left(U_{1} ; U_{2} \mid X\right)
\end{aligned}
$$

Successive Quantization

- Dominant Face: $R_{1}+R_{2}=I\left(X ; U_{1}\right)+I\left(X ; U_{2}\right)+I\left(U_{1} ; U_{2} \mid X\right)$.
- $V_{1}: R_{1}=I\left(X ; U_{1}\right), R_{2}=I\left(X, U_{1} ; U_{2}\right)$.
$V_{2}: R_{1}=I\left(X, U_{2} ; U_{1}\right), R_{2}=I\left(X ; U_{2}\right)$.

Quantization Splitting

- For any rate pair $\left(R_{1}, R_{2}\right)$ on the dominant face, there exists a random variable U_{2}^{\prime} with $\left(X, U_{1}\right) \rightarrow U_{2} \rightarrow U_{2}^{\prime}$ such that

$$
\begin{aligned}
& R_{1}=I\left(X, U_{2}^{\prime} ; U_{1}\right) \\
& R_{2}=I\left(X ; U_{2}^{\prime}\right)+I\left(X, U_{1} ; U_{2} \mid U_{2}^{\prime}\right)
\end{aligned}
$$

Quantization Order: $U_{2}^{\prime} \rightarrow U_{1} \rightarrow U_{2}$.
\diamond If U_{2}^{\prime} is independent of U_{2}, then

$$
R_{1}=I\left(X ; U_{1}\right), \quad R_{2}=I\left(X, U_{1} ; U_{2}\right),
$$

which are the coordinates of V_{1}.
\diamond If $U_{2}^{\prime}=U_{2}$, then

$$
R_{1}=I\left(X, U_{2} ; U_{1}\right), \quad R_{2}=I\left(X, U_{2}\right)
$$

which are the coordinates of V_{2}.

Gaussian MD Rate-Distortion Region

Let

$$
\begin{aligned}
& U_{1}=X+T_{0}+T_{1}, \\
& U_{2}=X+T_{0}+T_{2},
\end{aligned}
$$

where $\left(T_{1}, T_{2}\right), T_{0}, X$ are zero-mean, jointly Gaussian and independent, and $\mathbb{E}\left(T_{1} T_{2}\right)=$ $-\sigma_{T_{1}} \sigma_{T_{2}}$. Let $\widehat{X}_{i}=\mathbb{E}\left(X \mid U_{i}\right)=\alpha_{i} U_{i}(i=1,2)$, and $\widehat{X}_{3}=\mathbb{E}\left(X \mid U_{1}, U_{2}\right)=\beta_{1} U_{1}+\beta_{2} U_{2}$. Set $\mathbb{E}\left(X-\hat{X}_{i}\right)^{2}=D_{i}, i=1,2,3$, then

$$
\begin{aligned}
\sigma_{T_{0}}^{2} & =\frac{D_{3} \sigma_{X}^{2}}{\sigma_{X}^{2}-D_{3}}, \\
\sigma_{T_{i}}^{2} & =\frac{D_{i} \sigma_{X}^{2}}{\sigma_{X}^{2}-D_{i}}-\frac{D_{3} \sigma_{X}^{2}}{\sigma_{X}^{2}-D_{3}}, \quad i=1,2
\end{aligned}
$$

With these $\sigma_{T_{i}}^{2}(i=0,1,2)$, it is straightforward to verify that

$$
\begin{aligned}
& I\left(X ; U_{i}\right)=\frac{1}{2} \log \frac{\sigma_{X}^{2}}{D_{i}} \quad i=1,2, \\
& I\left(X ; U_{1}\right)+I\left(X ; U_{2}\right)+I\left(U_{1} ; U_{2} \mid X\right) \\
= & \frac{1}{2} \log \frac{\sigma_{X}^{2}}{D_{3}}+\frac{1}{2} \log \frac{\left(\sigma_{X}^{2}-D_{3}\right)^{2}}{\left(\sigma_{X}^{2}-D_{3}\right)^{2}-\left[\sqrt{\left(\sigma_{X}^{2}-D_{1}\right)\left(\sigma_{X}^{2}-D_{2}\right)}-\sqrt{\left(D_{1}-D_{3}\right)\left(D_{2}-D_{3}\right)}\right]^{2}} .
\end{aligned}
$$

The Correlation of Quantization Errors

We may view U_{1} and U_{2} as two different quantization of X.

$$
\begin{aligned}
& U_{1}=X+T_{0}+T_{1}, \\
& U_{2}=X+T_{0}+T_{2},
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}\left[\left(U_{1}-X\right)\left(U_{2}-X\right)\right] & =\mathbb{E}\left[\left(T_{0}+T_{1}\right)\left(T_{0}+T_{2}\right)\right] \\
& =\sigma_{T_{0}}^{2}-\sigma_{T_{1}} \sigma_{T_{2}} \\
& =\frac{D_{3} \sigma_{X}^{2}}{\sigma_{X}^{2}-D_{3}}-\sqrt{\left(\frac{D_{1} \sigma_{X}^{2}}{\sigma_{X}^{2}-D_{1}}-\frac{D_{3} \sigma_{X}^{2}}{\sigma_{X}^{2}-D_{3}}\right)\left(\frac{D_{2} \sigma_{X}^{2}}{\sigma_{X}^{2}-D_{2}}-\frac{D_{3} \sigma_{X}^{2}}{\sigma_{X}^{2}-D_{3}}\right)} \\
& \neq 0 .
\end{aligned}
$$

It is hard to design two quantizers with quantization errors correlated in a desired manner.

Successive Quantization and GS Orthogonalization

- GS Orthogonalization on $\left(X, U_{1}, U_{2}\right)$.

$$
\begin{aligned}
& B_{0}=X \\
& B_{1}=U_{1}-\mathbb{E}\left(U_{1} \mid X\right)=U_{1}-X \\
& B_{2}=U_{2}-\mathbb{E}\left(U_{1} \mid X, U_{1}\right)=U_{2}-a_{1} X-a_{2} U_{1}
\end{aligned}
$$

- Successive Quantization for V_{1}.

$$
\begin{aligned}
R_{1} & =I\left(X ; U_{1}\right)=I\left(X ; X+B_{1}\right) \\
R_{2} & =I\left(X, U_{1} ; U_{2}\right)=I\left(\mathbb{E}\left(U_{2} \mid X, U_{1}\right) ; U_{2}\right) \\
& =I\left(a_{1} X+a_{2} U_{1} ; a_{1} X+a_{2} U_{1}+B_{2}\right)
\end{aligned}
$$

Graph Representation of Successive Quantization

Quantization Splitting and GS Orthogonalization

- $U_{2}^{\prime}=U_{2}+T_{3}$.
- GS Orthogonalization on $\left(X, U_{2}^{\prime}, U_{1}\right)$.

$$
\begin{aligned}
& \widetilde{B}_{0}=X \\
& \widetilde{B}_{1}=U_{1}^{\prime}-\mathbb{E}\left(U_{2}^{\prime} \mid X\right)=U_{2}^{\prime}-X \\
& \widetilde{B}_{2}=U_{1}-\mathbb{E}\left(U_{1} \mid X, U_{2}^{\prime}\right)=U_{1}-b_{1} X-b_{2} U_{2}^{\prime}
\end{aligned}
$$

- Quantization Splitting.

$$
\begin{aligned}
R_{1} & =I\left(X, U_{2}^{\prime} ; U_{1}\right)=I\left(\mathbb{E}\left(U_{1} \mid X, U_{2}^{\prime}\right) ; U_{1}\right) \\
& =I\left(b_{1} X+b_{2} U_{2}^{\prime} ; b_{1} X+b_{2} U_{2}^{\prime}+\widetilde{B}_{2}\right) \\
R_{2} & =I\left(X ; U_{2}^{\prime}\right)+I\left(X, U_{1} ; U_{2} \mid U_{2}^{\prime}\right) \\
& =I\left(X ; X+\widetilde{B}_{1}\right)+I\left(X, U_{1} ; U_{2} \mid U_{2}^{\prime}\right)
\end{aligned}
$$

GS Orthogonalization on $\left(U_{2}^{\prime}, X, U_{1}, U_{2}\right)$

$$
\begin{aligned}
& \bar{B}_{0}=U_{2}^{\prime} \\
& \bar{B}_{1}=X-\mathbb{E}\left(X \mid \bar{B}_{0}\right)=X-b_{3} \bar{B}_{0} \\
& \bar{B}_{2}=U_{1}-\mathbb{E}\left(U_{1} \mid \bar{B}_{0}\right)-\mathbb{E}\left(U_{1} \mid \bar{B}_{1}\right)=U_{1}-b_{4} \bar{B}_{0}-b_{5} \bar{B}_{1} \\
& \bar{B}_{3}= \\
= & U_{2}-\mathbb{E}\left(U_{2} \mid \bar{B}_{0}\right)-\mathbb{E}\left(U_{2} \mid \bar{B}_{1}\right)-\mathbb{E}\left(U_{2} \mid \bar{B}_{2}\right) \\
& U_{2}-b_{6} \bar{B}_{0}-b_{7} \bar{B}_{1}-b_{8} \bar{B}_{2} \\
& I\left(X, U_{1} ; U_{2} \mid U_{2}^{\prime}\right) \\
= & I\left(b_{3} \bar{B}_{0}+\bar{B}_{1}, b_{4} \bar{B}_{0}+b_{5} \bar{B}_{1}+\bar{B}_{2} ; b_{6} \bar{B}_{0}+b_{7} \bar{B}_{1}+b_{8} \bar{B}_{2}+\bar{B}_{3} \mid \bar{B}_{0}\right) \\
= & I\left(\bar{B}_{1}, b_{5} \bar{B}_{1}+\bar{B}_{2} ; b_{7} \bar{B}_{1}+b_{8} \bar{B}_{2}+\bar{B}_{3}\right) \\
= & I\left(b_{7} \bar{B}_{1}+b_{8} \bar{B}_{2} ; b_{7} \bar{B}_{1}+b_{8} \bar{B}_{2}+\bar{B}_{3}\right) .
\end{aligned}
$$

Note: $b_{7} \bar{B}_{1}+b_{8} \bar{B}_{2}=\left(b_{7}-b_{5} b_{8}\right) X+b_{8} U_{1}+\left(b_{3} b_{5} b_{8}-b_{3} b_{7}-b_{4} b_{8}\right) U_{2}^{\prime}$.

Graph Representation of Quantization Splitting

Entropy-Coded Dithered Lattice Quantization

- $Q_{n}(\mathbf{X}+\mathbf{Z})-\mathbf{Z} \sim \mathbf{X}+\mathbf{N}$.
- $R=H\left(Q_{n}(\mathbf{X}+\mathbf{Z}) \mid \mathbf{Z}\right)=I(\mathbf{X} ; \mathbf{Y})=h(\mathbf{Y})-h(\mathbf{N})$.

Simulate GS Orthogonalization by Sequential (Dithered) Quantization

$$
\begin{aligned}
& I_{0}=X_{1} \\
& I_{1}=X_{2}-a_{1} X_{1} \\
& I_{2}=X_{3}-a_{2} X_{1}-a_{3} X_{2}
\end{aligned}
$$

Let Z_{i} have the same variance as $I_{i}, i=1,2, \cdots$. Construct the following sequential (dithered) quantization system.

$$
\begin{aligned}
\widetilde{X}_{1} & =X_{1} \\
\widetilde{X}_{2} & =Q_{1}\left(a_{1} \widetilde{X}_{1}+Z_{1}\right)-Z_{1} \\
\widetilde{X}_{3} & =Q_{2}\left(a_{2} \widetilde{X}_{1}+a_{3} \widetilde{X}_{2}+Z_{2}\right)-Z_{2}
\end{aligned}
$$

$$
\left(X_{1}, X_{2}, \cdots,\right) \text { and }\left(\widetilde{X}_{1}, \widetilde{X}_{2}, \cdots\right) \text { have the same covariance matrix. }
$$

Successive Quantization - Additive Noise

Successive Quantization - ECDQ

Quantization Splitting - Additive Noise

Quantization Splitting - ECDQ

Property and Performance

- Achieve the whole Gaussian MD rate-distortion region as the dimension of the (optimal) lattice quantizers becomes large.
- For general smooth sources, the performance no worse than that for an i.i.d. Gaussian source with the same variance.
- Asymptotically optimal at high resolution for general smooth sources.
- Universal in the sense that it only needs the information of the first and second order statistics of the source.
- For the scalar case, the central and side distortion product is 2.596 dB away from the information theoretic distortion product; 2.5 dB if timesharing of vertices is used.

Conclusion

- A Framework for Practical MD Quantization Systems
\diamond Successive Quantization (Splitting) \rightarrow Ordering
\diamond GS Orthogonalization \rightarrow Sufficient Statistics
$\diamond E C D Q \rightarrow$ Practical Implementation
- Generalization to the n-Channel Case (Venkataramani et al. 03, Pradhan et al. 04).
\diamond Successive Quantization (Splitting) \diamond Contra-polymatroid \diamond Duality
- MMSE Estimation and Lattice Coding/Quantization (Erez \& Zamir 04). Shannon meets Wiener (Forney 03,04).

