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Abstract— This paper investigates the compress-and-forward
scheme for an uplink cloud radio access network (C-RAN)
model, where multi-antenna base stations (BSs) are con-
nected to a cloud-computing-based central processor (CP) via
capacity-limited fronthaul links. The BSs compress the received
signals with Wyner-Ziv coding and send the representation bits
to the CP; the CP performs the decoding of all the users’
messages. Under this setup, this paper makes progress toward
the optimal structure of the fronthaul compression and CP
decoding strategies for the compress-and-forward scheme in
the C-RAN. On the CP decoding strategy design, this paper
shows that under a sum fronthaul capacity constraint, a gen-
eralized successive decoding strategy of the quantization and
user message codewords that allows arbitrary interleaved order
at the CP achieves the same rate region as the optimal joint
decoding. Furthermore, it is shown that a practical strategy of
successively decoding the quantization codewords first, then the
user messages, achieves the same maximum sum rate as joint
decoding under individual fronthaul constraints. On the joint
optimization of user transmission and BS quantization strategies,
this paper shows that if the input distributions are assumed to
be Gaussian, then under joint decoding, the optimal quantization
scheme for maximizing the achievable rate region is Gaussian.
Moreover, Gaussian input and Gaussian quantization with joint
decoding achieve to within a constant gap of the capacity region
of the Gaussian multiple-input multiple-output (MIMO) uplink
C-RAN model. Finally, this paper addresses the computational
aspect of optimizing uplink MIMO C-RAN by showing that
under fixed Gaussian input, the sum rate maximization problem
over the Gaussian quantization noise covariance matrices can be
formulated as convex optimization problems, thereby facilitating
its efficient solution.
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I. INTRODUCTION

CLOUD Radio Access Network (C-RAN) is an emerging
mobile network architecture in which base-stations (BSs)

in multiple cells are connected to a cloud-computing based
central processor (CP) through wired/wireless fronthaul links.
In the deployment of a C-RAN system, the BSs degenerate
into remote antennas heads implementing only radio func-
tionalities, such as frequency up/down conversion, sampling,
filtering, and power amplification. The baseband operations at
the BSs are migrated to the CP. The C-RAN model effectively
virtualizes radio-access operations such as the encoding and
decoding of user information and the optimization of radio
resources [1]. Advanced joint multicell processing techniques,
such as the coordinated multi-point (CoMP) and network
multiple-input multiple-output (MIMO), can be efficiently
supported by the C-RAN architecture, potentially enabling
significantly higher data rates than conventional cellular
networks [2].

This paper considers the uplink of a MIMO C-RAN system
under finite-capacity fronthaul constraints, as shown in Fig. 1,
which consists of multiple remote users sending independent
messages to the CP through multiple BSs serving as relay
nodes. Both the user terminals and the BSs are equipped
with multiple antennas. The BSs and the CP are connected
via noiseless fronthaul links with finite capacity. This chan-
nel model can be thought of as a two-hop relay network,
with an interference channel between the users and the BSs,
followed by a noiseless multiple-access channel between the
BSs and the CP. This paper assumes that a compress-and-
forward relaying strategy is employed, in which the relaying
BSs perform distributed lossy source coding to compress the
received signals and forward the representation bits to the CP
through digital fronthaul links, and all the user messages are
eventually decoded at the CP. The lossy source coding imple-
mented at BSs involves Wyner-Ziv coding typically consisting
of quantization followed by binning in order to achieve high
compression efficiency by leveraging the correlation between
the received signals across different BSs, which is different
from the point-to-point fronthaul compression implemented in
today’s conventional C-RAN systems.

A key question in the design of compress-and-forward
strategy in uplink C-RAN is the optimal input coding strategy
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Fig. 1. The uplink C-RAN model under finite-capacity fronthaul constraints.

at the user terminals, the optimal relaying strategy at the BSs,
and the optimal decoding strategy at the CP. Toward this end,
this paper restricts attention to the strategy of compressing
the received signals at the BSs, then either joint decoding
of the quantization and message codewords simultaneously,
or generalized successive decoding of the quantization and
message codewords in some arbitrary order at the CP. Under
this assumption, this paper makes the following contributions
toward revealing the structure of the optimal compress-and-
forward strategy.

First, motivated by the fact that successive decoding is much
easier to implement than joint decoding, we seek to understand
whether successive decoding at the CP can perform as well
as joint decoding. Toward this end, this paper shows that
generalized successive decoding indeed achieves the same rate
region as joint decoding for an uplink C-RAN model under a
sum fronthaul constraint. Further, although not necessarily so
for the general rate region, if one focuses on maximizing the
sum rate, the particular strategy of successively decoding the
quantization codewords first, then the user messages, achieves
the optimal sum rate.

Second, we seek to understand the optimal input distribution
and quantization schemes in uplink C-RAN. Although it is
well known that joint Gaussian strategies are not necessarily
optimal, this paper shows that if we fix the input distribution to
be Gaussian, then the optimal quantization scheme is Gaussian
under joint decoding, and vice versa. Moreover, joint Gaussian
signaling can be shown to achieve the capacity region of
the Gaussian multiple-input multiple-output (MIMO) uplink
C-RAN model to within a constant gap. Finally, this paper
makes progress on the computational front by showing that
under the joint Gaussian assumption, the optimization of
the quantization covariance matrices for maximizing the sum
rate can be formulated as a convex optimization problem.
These results suggest that joint Gaussian input signaling and
Gaussian quantization is a suitable strategy for the uplink
C-RAN.

A. Related Work

The achievable rate region of compress-and-forward with
joint decoding for the uplink C-RAN model was first char-
acterized in [3] for a single-transmitter model then in [4] for

the multi-transmitter case. However, the number of rate con-
straints in the joint decoding rate region grows exponentially
with the size of the network [3, Proposition IV.1], which
makes the evaluation of the achievable rate computationally
prohibitive. The achievable rate region of the compress-
and-forward strategy with practical successive decoding,
in which the quantization codewords are decoded first, then
the user messages are decoded based on the recovered quan-
tization codewords, has also been studied for the uplink
C-RAN model [5, Theorem 1]. One of the objectives of this
paper is to illustrate the relationship between joint decoding
and successive decoding. In the existing literature, the equiv-
alence between these two decoding schemes is first demon-
strated for single-source, single-destination, and single-relay
networks [6, Appendix 16C], then shown for single-source,
single-destination, and multiple-relay networks [7], under
either block-by-block forward decoding or block-by-block
backward decoding. This paper further demonstrates that
in the case of uplink C-RAN, which is a multiple-source,
single-destination, multiple-relay network, the optimality of
successive decoding still holds under suitable conditions.

In general, it is challenging to find the optimal joint
input and quantization noise distributions that maximize the
achievable rate of the compress-and-forward scheme for uplink
C-RAN. Gaussian signaling is not necessarily optimal—in
particular, in a simple example of uplink C-RAN with one
user and two BSs shown in [5], binary input is shown to
outperform Gaussian input for a broad range of signal-to-
noise ratios (SNRs). However, Gaussian input and Gaussian
quantization can be shown to be approximately optimal.
In fact, the uplink C-RAN model is an example of a general
Gaussian relay network with multiple sources and a single des-
tination for which a generalization of compress-and-forward
with joint decoding (referred to as noisy network coding
scheme [8]–[11]) and with Gaussian input and Gaussian quan-
tization can be shown to achieve to within a constant gap to
the information theoretical capacity of the overall network.
Instead of using noisy network coding, our previous work [12]
shows that successive decoding can achieve the sum capacity
of uplink C-RAN to within constant gap, if the fronthaul
links are subjected to a sum capacity constraint. In this work,
we further demonstrate that the compress-and-forward scheme
with joint decoding can achieve to within a constant gap to
the entire capacity region of the uplink C-RAN model with
individual fronthaul constraints; same is true for successive
decoding under suitable condition.

An important theoretical result obtained in this paper is that
if the input distributions of the uplink C-RAN model are fixed
to be Gaussian, then Gaussian quantizer is in fact optimal
under joint decoding. Finding the optimal quantization for the
C-RAN model is related to the mutual information constraint
problem [13], for which entropy power inequality is used to
show that Gaussian quantization is optimal for a three-node
relay network with Gaussian input. However, it is challenging
to extend this approach to the uplink C-RAN model, which
has multiple sources. This paper provides a novel proof of the
optimality of Gaussian quantization based on the de Bruijn
identity and the Fisher information inequality. The idea of the
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proof is inspired by the connection between the C-RAN model
and the CEO problem in source coding [14], where a source
is described to a central unit by remote agents with noisy
observations. The solution to the CEO problem is known for
the scalar Gaussian case [15], [16]; significant recent progress
has been made in the vector case, e.g., [17]. The similarity
between the uplink C-RAN model and the CEO problem has
been noted in [5], based on which a capacity upper bound
for the uplink C-RAN model is established. In this paper,
we use techniques for establishing the outer bound for the
Gaussian vector CEO problem [18] to prove the optimality of
Gaussian quantization. We also remark the connection between
this quantization optimization problem and the information
bottleneck method [19], for which joint Gaussian distribution
is shown to be Pareto optimal. The technique used in this
paper is a significantly simpler alternative to the enhancement
technique given in [20].

This paper also makes progress in observing that the opti-
mization of Gaussian quantization noise covariance matrices
for maximizing the (weighted) sum rate of uplink C-RAN can
be reformulated as a convex optimization problem. The quan-
tization noise covariance optimization problem for uplink
C-RAN has been considered extensively in the literature. Vari-
ous optimization algorithms have been developed to maximize
the achievable rates of the compress-and-forward scheme for
the case of either successive decoding of the quantization
codewords followed by the user messages [21], [22] or joint
decoding of the quantization codewords and user messages
simultaneously [23]. In particular, a zero-duality gap result
has been shown for the weighted sum rate maximization
problem under a sum fronthaul capacity constraint in [21]
based on a time-sharing argument to facilitate the algorithm
design for searching optimal quantization noise covariance
matrices. However, the optimization problems formulated in
these works (i.e., [21]–[23]) are inherently nonconvex, hence
only locally convergent algorithms are obtained. Instead, this
paper provides a convex formulation of the problem that
allows globally optimal Gaussian quantization noise covari-
ance matrices to be found. Note that here the optimization of
the quantization noise covariance matrix is performed under
the fixed Gaussian input. The joint optimization of the input
signal and quantization noise covariance matrices remains a
computationally challenging difficult problem [24].

B. Main Contributions

This paper establishes several information theoretic results
on the compress-and-forward scheme for the uplink MIMO
C-RAN model with finite-capacity fronthaul links. A summary
of our main contributions is as follows:

• This paper demonstrates that generalized successive
decoding for compress-and-forward, which allows the
decoding of the quantization and user message code-
words in an arbitrary order, can achieve the same rate
region as joint decoding for compress-and-forward under
a sum fronthaul capacity constraint. Further, successive
decoding of the quantization codewords first, then the
user message codewords, can achieve the same maximum

sum rate as joint decoding under individual fronthaul
constraints.

• This paper shows that under Gaussian input and Gaussian
quantization, compress-and-forward with joint decoding
achieves to within a constant gap of the capacity region
of the uplink MIMO C-RAN model. Combining with the
result above, the same constant-gap result also holds for
generalized successive decoding under a sum fronthaul
constraint and for successive decoding for sum rate
maximization.

• This paper shows that under fixed Gaussian input,
Gaussian quantization maximizes the achievable rate
region under joint decoding. Combining with the opti-
mality result for successive decoding, this also implies
that under fixed Gaussian input, Gaussian quantization is
optimal for generalized successive decoding under a sum
fronthaul constraint, and for successive decoding for sum
rate maximization.

• Under joint Gaussian signaling and Gaussian quanti-
zation, the optimization of quantization noise covari-
ance matrices for maximizing weighted sum rate under
joint decoding and for maximizing sum rate under
successive decoding can be formulated as convex
optimization problems, which facilitate their efficient
solution.

C. Paper Organization and Notation

The rest of the paper is organized as follows. Section II
introduces the channel model for the uplink MIMO C-RAN
and characterizes the achievable rate regions for compress-
and-forward schemes with joint decoding and generalized
successive decoding respectively. Section III demonstrates
the rate-region optimality of generalized successive decoding
under a sum fronthaul constraint and the sum-rate optimality
of successive decoding. Section IV focuses on establishing the
optimality of Gaussian quantizers with joint decoding under
Gaussian input. In addition, Section IV also establishes the
approximate capacity of the uplink MIMO C-RAN model
to within constant gap, and shows the convex formulation
of the (weighted) sum rate maximization problems over the
quantization noise covariance matrices. Section V concludes
the paper.

Notation: Boldface letters denote vectors or matrices, where
context should make the distinction clear. Superscripts (·)T,
(·)† and (·)−1 denote transpose operation, Hermitian transpose
and matrix inverse operators; E[·] and Tr(·) denote expectation
and matrix trace operators; co(·) denotes the convex closure
operation; p(·) denotes the probability distribution function
in this paper. We use X j

i = (Xi , Xi+1, . . . , X j
)

to denote a
matrix with ( j − i + 1) columns for 1 ≤ i ≤ j . For a vec-
tor/matrix X, XS denotes a vector/matrix with elements whose
indices are elements of S. Given matrices {X1, . . . , XL},
diag
({X�}L

�=1

)
denotes the block diagonal matrix formed with

X� on the diagonal. For random vectors X and Y, J(X|Y)
denotes the Fisher information matrix of X conditional on
Y; cov(X|Y) denotes the covariance matrix of X conditional
on Y.
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II. ACHIEVABLE RATE REGIONS FOR UPLINK C-RAN

A. Channel Model

This paper considers an uplink C-RAN model, where
K mobile users communicate with a CP through L BSs,
as shown in Fig. 1. The noiseless digital fronthaul link
connecting the BS � to the CP has the capacity of C� bits
per complex dimension. The fronthaul capacity C� is the
maximum long-term average throughput of the �th fronthaul
link, i.e., lim

n→∞
1
n

∑n
i=1 C�(i) ≤ C�, where C�(i) represents the

instantaneous transmission rate of the �th fronthaul link at the
i th time slot. Each user terminal is equipped with M antennas;
each BS is equipped with N antennas. Perfect channel state
information (CSI) is assumed to be available to all the BSs
and to the CP. For simple notation, we denote K = {1, · · · , K }
and L = {1, · · · , L} in this paper.

Let Xk ∈ C
M be the signal transmitted by the kth user,

which is subject to per-user transmit power constraint of Pk ,
i.e. E

[
XkX†

k

]
≤ Pk . The signal received at the �th BS can be

expressed as

Y� =
K∑

k=1

H�,kXk + Z�, � = 1, 2, . . . , L, (1)

where Z� ∼ CN (0,��) represents the additive Gaussian noise
for BS � and is independent across different BSs, and H�,k

denotes the complex channel matrix from user k to BS �.
We consider the compress-and-forward scheme [25], [26]

applied to the uplink C-RAN system, in which the BSs
compress the received signals Y�, and forward the quantization
bits to the CP for decoding. At the CP, the user messages
are decoded using either joint decoding or some form of
successive decoding. In joint decoding, the quantization code-
words and the message codewords are decoded simultaneously,
whereas, in successive decoding, the quantization codewords
and messages are decoded successively in some prescribed
order. Different orderings can potentially result in different
achievable rates.

B. Achievable Rate-Fronthaul Regions for Joint Decoding,
Successive Decoding, and Generalized Successive Decoding

In the following, we present the achievable rate-fronthaul
regions of compress-and-forward with joint decoding and
different forms of successive decoding.

Proposition 1 ([3, Proposition IV.1]): For the uplink
C-RAN model shown in Fig. 1, the achievable
rate-fronthaul region of compress-and-forward with joint
decoding, P∗

J D, is the closure of the convex hull of all
(R1, · · · , RK , C1, . . . , CL) ∈ R

K+L+ satisfying
∑

k∈T
Rk <
∑

�∈S

[
C� − I

(
Y�; Ŷ�|XK

)]
+ I
(

XT ; ŶSc |XT c

)

(2)

for all T ⊆ K and S ⊆ L, for some product distribution
∏K

k=1 p(xk)
∏L

�=1 p(ŷ�|y�) such that E

[
XkX†

k

]
≤ Pk for k =

1, . . . , K .

Note that for the uplink C-RAN model, the rate region (2)
given by compress-and-forward with joint decoding is identi-
cal to the rate region of the noisy network coding scheme [9],
which is an extension of the compress-and-forward scheme
to the general multiple access relay network by using joint
decoding at the receiver and block Markov coding at the
transmitters.

As a more practical decoding strategy, successive decoding
of quantization codewords first, and then the user messages
at the CP can also be used in uplink C-RAN. The following
proposition states the rate-fronthaul region achieved by suc-
cessive decoding.

Proposition 2: ([5, Theorem 1]): For the uplink C-RAN
model shown in Fig. 1, the achievable rate-fronthaul region of
compress-and-forward with successive decoding, P∗

S D, is the
closure of the convex hull of all (R1, · · · , RK , C1, . . . , CL ) ∈
R

K+L+ satisfying

∑

k∈T
Rk < I

(
XT ; ŶL|XT c

)
, ∀ T ⊆ K, (3)

and

I
(

YS; ŶS |ŶSc

)
<
∑

�∈S
C�, ∀ S ⊆ L, (4)

for some product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�) such

that E

[
XkX†

k

]
≤ Pk for k = 1, . . . , K .

Note that (3) is the multiple-access rate region, (4) repre-
sents the Berger-Tung rate region for distributed lossy com-
pression [6, Theorem 12.1], while (2) incorporates the joint
decoding of the quantization codewords and the user messages.
Because of its lower decoding complexity, successive decoding
is usually preferred for practical implementation of the uplink
C-RAN systems [21], [22]. Note that in the above strategy,
successive decoding applies only to the vector Xk (user mes-
sage codewords) and the vector Y� (quantization codewords);
the elements within vectors Xk and Y� are still decoded
jointly.

It is possible to improve upon the successive decoding
scheme by allowing arbitrary interleaved decoding orders
between quantization codewords and user message codewords.
We call this the generalized successive decoding scheme in
this paper. The generalized successive decoding scheme is
first suggested in [27] under the name of joint base-station
successive interference cancelation scheme. In such a succes-
sive decoding strategy, the set of potential decoding orders
includes all the permutations of quantization and user message
codewords.

Denote π as a permutation on the set of quantization and
user message codewords

(
Ŷ1, Ŷ2, . . . , ŶL , X1, X2, . . . XK

)
.

For a given permutation π , the decoding order is given by
the index of the elements in π , i.e., π(1) → π(2) →
· · · → π(L + K ). For example, consider an uplink C-RAN
model as shown in Fig. 1 with 2 BSs and 2 users. If π =(

Ŷ1, X1, Ŷ2, X2

)
, then the decoding of Ŷ2 and X2 can

use both previously decoded user messages and quantization
codewords as side information. The resulting rate region is
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characterized as
⎧
⎨

⎩

R1 < I
(

X1; Ŷ1

)
,

R2 < I
(

X2; Ŷ1, Ŷ2|X1

)
,

(5)

for some product distribution p(x1)p(x2)p(ŷ1|y1)p(ŷ2|y2)
that satisfies

⎧
⎨

⎩

C1 > I
(

Y1; Ŷ1

)
,

C2 > I
(

Y2; Ŷ2|Ŷ1, X1

)
.

(6)

Let IXk , IY� denote the indices of user messages that are
decoded before Xk and Y� under the permutation π , respec-
tively. Likewise, let JXk , JY� denote the indices of quanti-
zation codewords that are decoded before Xk and Y� under
the permutation π , respectively. The rate-fronthaul region of
generalized successive decoding for uplink C-RAN is stated
in the following proposition.

Proposition 3: For the uplink C-RAN model shown
in Fig. 1, the achievable rate-fronthaul region of generalized
successive decoding with decoding order π , PGS D(π), is the
closure of the convex hull of all (R1, · · · , RK , C1, . . . , CL) ∈
R

K+L+ satisfying

Rk < I
(

Xk; ŶJXk
|XIXk

)
, ∀ k ∈ K, (7)

and

C� > I
(

Y�; Ŷ�|ŶJY�
, XIY�

)
, ∀ � ∈ L, (8)

for some product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�) such

that E

[
XkX†

k

]
≤ Pk for k = 1, . . . , K . The generalized

successive decoding region P∗
GS D is defined to be the closure

of the convex hull of the union of regions PGS D(π) over all
possible permutation π’s, i.e.,

P∗
GS D = co

(
⋃

π

PGS D(π)

)

. (9)

III. OPTIMALITY OF SUCCESSIVE DECODING

In general, we have P∗
S D ⊆ P∗

GS D ⊆ P∗
J D. However,

successive decoding is more desirable than joint decoding,
not only because of its lower complexity, but also due to the
fact that its rate region can be more easily evaluated. Thus,
there is a tradeoff between complexity and performance in
designing decoding strategies for uplink C-RAN. To further
understand this tradeoff, this section establishes that: 1) By
allowing arbitrary decoding orders of quantization and mes-
sage codewords, the generalized successive decoding actually
achieves the same rate region as joint decoding under a
sum fronthaul constraint; 2) The practical successive decoding
strategy in which the BSs decode the quantization codewords
first, then the user messages, actually achieves the same max-
imum sum rate as joint decoding under individual fronthaul
constraints.

A. Optimality of Generalized Successive Decoding Under a
Sum Fronthaul Constraint

This section shows that in the special case where the fron-
thaul links are subject to a sum capacity constraint, generalized
successive decoding achieves the rate region as joint decoding.
In this model, the fronthaul capacities are constrained by∑L

�=1 C� ≤ C and C� ≥ 0, justifiable in situations where the
fronthaul are implemented in shared medium (e.g. wireless
fronthaul links), as has been considered in [21] and [12].
Under the sum fronthaul capacity constraint C , the rate regions
achieved by with joint decoding R∗

J D,s is defined as

R∗
J D,s

=

⎧
⎪⎨

⎪⎩
(R1, . . . , RK )

∣
∣
∣
∣
∣∣
∣

(R1, · · · , RK , C1, . . . , CL) ∈ P∗
J D,

L∑

�=1

C� ≤ C, C� ≥ 0

⎫
⎪⎬

⎪⎭
.

(10)

Likewise, the rate region achieved with generalized successive
decoding R∗

GS D,s is given by

R∗
GS D,s

=
{
(R1, . . . , RK )

∣
∣∣
∣
(R1, · · · , RK , C1, . . . , CL ) ∈ P∗

GS D,∑L
�=1 C� ≤ C, C� ≥ 0

}
.

(11)

The following theorem states the main result of this section.
Theorem 1: For the uplink C-RAN model with the sum

fronthaul capacity constraint
∑L

�=1 C� ≤ C and C� ≥ 0,
the rate region achieved by generalized successive decoding
and joint coding are identical, i.e., R∗

GS D,s = R∗
J D,s.

Proof: See Appendix A.
The roadmap for the proof of Theorem 1 shares the same

idea as the characterization of the rate distortion region for
the CEO problem under logarithmic loss [28] and the capac-
ity region for the multiple-access channel [29], which uses
the properties of submodular polyhedron (see Appendix B).
Specifically, in order to show R∗

GS D,s = R∗
J D,s , we show that

under fixed product distribution
∏K

k=1 p(xk)
∏L

�=1 p(ŷ�|y�),
every extreme point of the polyhedron (R∗

J D,s, C) is domi-
nated by the points in the polyhedron defined by (R∗

GS D,s, C).
We conjecture that Theorem 1 holds also for the case of
individual fronthaul capacity constraints. However, in that
case, finding the dominant faces of polyhedron P∗

J D becomes
much more difficult, it appears non-trivial to extend the current
proof to the case of individual fronthaul constraints.

B. Optimality of Successive Decoding for Maximizing Sum
Rate

As a special instance of generalized successive decoding,
successive decoding reconstructs quantization codewords first,
then user message codewords in a sequential order. In what
follows, we show that the optimal sum rate achieved by this
special successive decoding is the same as that achieved by
joint decoding.
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Under fixed input distribution and fixed fronthaul capaci-
ties C�, for � = 1, . . . , L, the maximum sum rate achieved by
joint decoding R∗

J D,SU M is defined as

R∗
J D,SU M =

⎧
⎪⎪⎨

⎪⎪⎩

max
K∑

k=1

Rk

s.t. (R1, · · · , RK , C1, . . . , CL) ∈ P∗
J D.

(12)

Likewise, the maximum sum rate for successive decoding
RS D,SU M is given by

R∗
S D,SU M =

⎧
⎪⎪⎨

⎪⎪⎩

max
K∑

k=1

Rk

s.t. (R1, · · · , RK , C1, . . . , CL) ∈ P∗
S D.

(13)

The following theorem demonstrates the optimality of succes-
sive decoding for maximizing uplink C-RAN under individual
fronthaul constraints.

Theorem 2: For the uplink C-RAN model with fronthaul
capacities C� shown in Fig. 1, the maximum sum rates
achieved by successive decoding and joint decoding are the
same, i.e., R∗

S D,SU M = R∗
J D,SU M.

Proof: See Appendix C.
We remark that Theorem 2 can be thought as a gen-

eralization of a result in [7] that shows under block-by-
block forward decoding, the compress-and-forward scheme
with compression-message successive decoding achieves the
same maximum rate as that with compression-message joint
decoding for a single-source, single-destination relay network.
The uplink C-RAN is a multiple-source, single-destination
relay network. If all the user terminals are regarded as one
super transmitter, then it follows from [7] that successive
decoding and joint decoding achieve the same maximum
sum rate. However, the proof in [7] is quite complicated.
In this paper, we provide an alternative proof technique for
showing the optimality of successive decoding for sum rate
maximization in uplink C-RAN. The new proof utilizes the
properties of submodular optimization, which is simpler than
the proof provided in [7]. The proofs of Theorem 2 and
Theorem 1 illustrate the usefulness of submodular optimiza-
tion in establishing this type of results.

It is remarked that successive decoding and joint decoding
achieve the same sum rate, but do not achieve the same rate
region. The achievable rate region of generalized successive
decoding is in general larger than that of successive decoding.
For example, consider the compress-and-forward scheme for
maximizing the rate of user 1, R1, only. The optimal decod-
ing order should be XK\{1} → ŶL → X1. With this decoding
order, user 1 can achieve larger rate than using the decoding
order of ŶL → XK, because the decoded user messages
X2, X3, . . . , XK can serve as side information for the decoding
of ŶL. In general, to maximize a weighted sum rate, one needs
to maximize over (L+K )! orderings for generalized successive
decoding. The main result of this section shows however that
for maximizing the sum rate in uplink C-RAN, successive
decoding of the quantization codewords first, and then the user
messages is optimal; this reduces the search space consider-
ably to L!K ! decoding orders.

IV. UPLINK C-RAN WITH GAUSSIAN INPUT AND

GAUSSIAN QUANTIZATION

In this section, we specialize to the compress-and-forward
scheme for uplink C-RAN with Gaussian input signal at
the users and Gaussian quantization at the BSs. Although it
is known that joint Gaussian distribution is suboptimal for
uplink C-RAN [5], Gaussian input is desirable, because it
leads to achievable rate regions that can be easily evaluated.
In the following section, it is shown that with Gaussian input
and Gaussian quantization, compress-and-forward with joint
decoding can achieve the capacity region of uplink C-RAN to
within a constant gap. The gap depends on the network size
but is independent of the channel gain matrix and the SNR.
We further establish the optimality of Gaussian compression
at the relaying BSs for joint decoding, if the input is Gaussian.
These results can be further extended to generalized successive
decoding under a sum fronthaul constraint and successive
decoding for the maximum sum rate. Additionally, under
Gaussian signaling, the optimization of quantization noise
covariance matrices for weighted sum-rate maximization under
joint decoding and for sum rate maximization under practical
successive decoding can be cast as convex optimization prob-
lems, thereby facilitating their efficient numerical solution.
Throughout this section, we focus on the achievable rates
under the fixed Gaussian input, and the fixed fronthaul capacity
constraints C� for � = 1, . . . , L.

A. Achievable Rate Regions Under Gaussian Input and
Gaussian Quantization

We let the input distribution be Gaussian, i.e., Xk ∼
CN (0, Kk), then evaluate the rate regions for the compress-
and-forward scheme with joint decoding and successive decod-
ing under Gaussian quantization, denoted as RG

J D,G I n and

RG
S D,G I n, respectively. Set

∏L
�=1 p(ŷ�|y�) ∼ CN (y�, Q�),

where Q� is the Gaussian quantization noise covariance matrix
at the �th BS.

With Gaussian input and Gaussian quantization, we have

I (Y�; Ŷ�|XK) = log
|�� + Q�|

|Q�| (14)

and

I
(

XT ; ŶSc |XT c

)

= log

∣
∣
∣HSc,T KT H†

Sc,T + diag ({�� + Q�}�∈Sc)
∣
∣
∣

|diag ({�� + Q�}�∈Sc)| .

(15)

The achievable rate region (2) for joint decoding can be
evaluated as
∑

k∈T
Rk <
∑

�∈S

[
C� − log

|�� + Q�|
|Q�|

]

+ log

∣
∣∣HSc,T KT H†

Sc,T + diag ({�� + Q�}�∈Sc)
∣
∣∣

|diag ({�� + Q�}�∈Sc)| ,

(16)

for all T ⊆ K and S ⊆ L.
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Likewise the achievable rate expression (3) for successive
decoding becomes

∑

k∈T
Rk < log

∣
∣
∣HSc,KKKH†

L,K + diag ({�� + Q�}�∈L)
∣
∣
∣

|diag ({�� + Q�}�∈L)| ,

(17)

for all T ⊆ K.
In deriving the fronthaul constraint (4), we start with

evaluating the mutual information

I
(

YS ; ŶS |ŶSc

)

= I
(

XK, YS ; ŶS |ŶSc

)
− I
(

XK; ŶS |YS , ŶSc

)

= I
(

XK; ŶS |ŶSc

)
+ I
(

YS ; ŶS |XK, ŶSc

)

− I
(

XK; ŶS |YS , ŶSc

)

(a)= I
(

XK; ŶS |ŶSc

)
+ I
(

YS ; ŶS |XK
)

(b)= I
(

XK; ŶL
)

− I
(

XK; ŶSc

)
+
∑

�∈S
I (Y�; Ŷ�|XK)

(18)

for all S ⊆ L, where the equality (a) follows from the fact
that

I
(

YS ; ŶS |XK, ŶSc

)
= I
(

YS; ŶS |XK
)

(19)

and

I
(

XK; ŶS |YS , ŶSc

)
= 0, (20)

and equality (b) follows from the fact that

I
(

YS ; ŶS |XK
)

=
∑

�∈S
I (Y�; Ŷ�|XK). (21)

The above equations (19)-(21) follow from the Markov chain

Ŷi ↔ Yi ↔ XK ↔ Y j ↔ Ŷ j , ∀ i �= j.

We further evaluate the mutual information expression (18)
with Gaussian input and Gaussian quantization, which yields
that

I
(

YS; ŶS |ŶSc

)

= log

∣
∣
∣HL,KKKH†

L,K + diag ({�� + Q�}�∈L)
∣
∣
∣

|diag ({�� + Q�}�∈L)|

− log

∣
∣∣HSc,KKKH†

Sc,K + diag ({�� + Q�}�∈Sc)
∣
∣∣

|diag ({�� + Q�}�∈Sc)|
+
∑

�∈S
log

|�� + Q�|
|Q�|

= log

∣
∣
∣HL,KKKH†

L,K + diag ({�� + Q�}�∈L)
∣
∣
∣

∣
∣
∣HSc,KKKH†

Sc,K + diag ({�� + Q�}�∈Sc)
∣
∣
∣

−
∑

�∈S
log |Q�|

≤
∑

�∈S
C�.

Instead of parameterizing the rate expressions over Q� as
in above, in this section, we introduce the following repara-
meterization, which is crucial for proving our main results.
Define

B� = (�� + Q�)
−1 . (22)

We represent the rate regions of joint decoding and successive
decoding in terms of B� in the following.

Proposition 4: For the uplink C-RAN model shown
in Fig. 1 and under fixed Gaussian input XK ∼ CN (0, KK)
with KK = diag ({Kk}k∈K). The rate-fronthaul region for joint
decoding under Gaussian quantization, PG

J D,G I n, is the closure
of the convex hull of all (R1, · · · , RK , C1, . . . , CL ) satisfying

∑

k∈T
Rk <
∑

�∈S

⎡

⎣C� − log

∣
∣
∣�−1

�

∣
∣
∣

∣
∣
∣�−1

� − B�

∣
∣
∣

⎤

⎦

+ log

∣
∣
∣
∑

�∈Sc H†
�,T B�H�,T + K−1

T

∣
∣
∣

∣∣
∣K−1

T

∣∣
∣

(23)

for all T ⊆ K and S ⊆ L, for some 0  B�  �−1
� , where

KT = E

[
XT X†

T

]
is the covariance matrix of XT , and H�,T

denotes the channel matrix from XT to Y�. Furthermore, under
the fixed fronthaul capacity constraints C� for � = 1, . . . , L,
the rate region achieved by joint decoding RG

J D,G I n is
defined as

RG
J D,G I n

=
{
(R1, . . . , RK ) : (R1, · · · , RK , C1, . . . , CL) ∈ PG

J D,G I n

}
.

(24)
Proposition 5: For the uplink C-RAN model shown in

Fig. 1 and under fixed Gaussian input XK ∼ CN (0, KK)
with KK = diag ({Kk}k∈K). The rate-fronthaul region for
successive decoding, PG

S D,G I n, is the closure of the convex
hull of all (R1, · · · , RK , C1, . . . , CL) satisfying

∑

k∈T
Rk < log

∣
∣
∣
∑L

�=1 H†
�,T B�H�,T + K−1

T

∣
∣
∣

∣
∣
∣K−1

T

∣
∣
∣

, ∀ T ⊆ K,

(25)

and

log

∣
∣
∣
∣

L∑

�=1
H†

�,KB�H�,K + K−1
K

∣
∣
∣
∣

∣
∣
∣
∣
∣
∑

�∈Sc
H†

�,KB�H�,K + K−1
K

∣
∣
∣
∣
∣

+
∑

�∈S
log

∣
∣
∣�−1

�

∣
∣
∣

∣
∣
∣�−1

� − B�

∣
∣
∣

<
∑

�∈S
C�, ∀ S ⊆ L, (26)

for some 0  B�  �−1
� , where KT = E

[
XT X†

T

]
is the

covariance matrix of XT , and H�,T denotes the channel matrix
from XT to Y�. Moreover, under the fixed fronthaul capacity
constraints C� for � = 1, . . . , L, the rate region achieved by
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successive decoding RG
S D,G I n is defined as

RG
S D,G I n

=
{
(R1, . . . , RK ) : (R1, · · · , RK , C1, . . . , CL) ∈ PG

S D,G I n

}
.

(27)

B. Gaussian Input and Gaussian Quantization Achieve
Capacity to within Constant Gap

With Gaussian input and Gaussian quantization, the rate
region of joint decoding (23) can be shown to be within a
constant gap to the capacity region of uplink C-RAN. This
constant-gap result is stated in the following theorem.

Theorem 3: For any rate tuple (R1, R2, . . . , RK ) within
the cut-set bound for uplink C-RAN with fixed fron-
thaul capacities of C� shown in Fig. 1, the rate tuple
(R1 − η, R2 − η, . . . , RK − η), with η = N L + M is achiev-
able for compress-and-forward with Gaussian input, Gaussian
quantization, and joint decoding, where L is the number of
BSs in the network, M is the number of transmit antennas
at user, and N is the number of receive antennas at BS,
i.e., (R1 − η, R2 − η, . . . , RK − η) ∈ RG

J D,G I n.
Proof: See Appendix D.

Although the uplink C-RAN model is an example of a
relay network for which noisy network coding approach
applies and it is known that compress-and-forward with joint
decoding achieves the same rate region as noisy network
coding for uplink C-RAN, we remark that Theorem 3 does
not immediately follow from the constant-gap optimality result
of noisy network coding [9]. The constant-gap optimality of
noisy network coding is proven for Gaussian relay networks,
whereas the uplink C-RAN model contains fronthaul links
which are digital connections and not Gaussian channels.

Combining with our earlier results on the optimality of
successive decoding, constant-gap optimality results can also
be obtained for compress-and-forward with generalized suc-
cessive decoding and successive decoding. These results are
summarized in the following corollary.

Corollary 1: For the uplink C-RAN model as shown in
Fig. 1, compress-and-forward with generalized successive
decoding, under Gaussian input and Gaussian quantization
achieves the capacity region to within N L + M bits per com-
plex dimension if the fronthaul links are subjected to a sum
capacity constraint

∑L
�=1 C� ≤ C . Furthermore, compress-

and-forward with successive decoding, under Gaussian input
and Gaussian quantization, achieves the sum capacity of an
uplink C-RAN model with individual fronthaul constraints to
within N L + M K bits per complex dimension.

C. Optimality of Gaussian Quantization Under Joint
Decoding

For the Gaussian uplink MIMO C-RAN model, it is known
that Gaussian input and Gaussian quantization are not jointly
optimal [5]. However, if the quantization noise is fixed
as Gaussian, then the optimal input distribution must be
Gaussian. This is because the channel reduces to a conven-
tional Gaussian multiple-access channel in this case. The main

result of this section is that the converse is also true, i.e.,
under fixed Gaussian input, Gaussian quantization actually
maximizes the achievable rate region of the uplink C-RAN
model under joint decoding.

Under fixed fronthaul capacity constraints C� for � =
1, . . . , L, we let R∗

J D,G I n denote the rate region of joint
decoding under Gaussian input and optimal quantization.
In the following, we first define Fisher information and state
the two main tools for proving this result: the Bruijn identity
and the Fisher information inequality. We then present the
main theorem on the optimality of Gaussian quantization for
joint decoding, i.e., RG

J D,G I n = R∗
J D,G I n.

Definition 1: Let (X, Y) be a pair of random vectors with
joint probability distribution function p (x, y). The Fisher
information matrix of X is defined as

J (X) = E

[
∇ log p (X) ∇ log p (X)T

]
. (28)

Likewise, the Fisher information matrix of X conditional on
Y is defined as

J (X|Y) = E

[
∇ log p (X|Y)∇ log p (X|Y)T

]
. (29)

Lemma 1: (Fisher Information Inequality, [30] [18,
Lemma 2]): Let (U, X) be an arbitrary complex random
vector, where the conditional Fisher information of X
conditioned on U exists. We have

log
∣
∣
∣(πe)J−1 (X|U)

∣
∣
∣ ≤ h (X|U) . (30)

Lemma 2 (Bruijn Identity, [31] [18, Lemma 3]): Let
(V1, V2) be an arbitrary random vector with finite second
moments, and N be a zero-mean Gaussian random vector with
covariance �N . Assume (V1, V2) and N are independent.
We have

cov (V2|V1, V2 + N) = �N − �N J (V2 + N|V1)�N . (31)

Theorem 4: For the uplink C-RAN under fixed Gaussian
input distribution and assuming joint decoding, Gaussian quan-
tization is optimal, i.e., RG

J D,G I n = R∗
J D,G I n.

Proof: Recall that the achievable rate region of the
compress-and-forward scheme under joint decoding is given
by the set of (R1, . . . , RK ) derived from (2) under the joint
distribution

p
(
x1, . . . , xK , y1, . . . , yL , ŷ1, . . . , ŷL

)

=
K∏

k=1

p (xk)

L∏

�=1

p (y�|x1, . . . , xK )

L∏

�=1

p
(
ŷ�|y�

)
. (32)

For fixed Gaussian input XK ∼ CN (0, KK) and fixed∏L
�=1 p(ŷ�|y�), choose B� with 0  B�  �−1

� such that

cov
(

Y�|XK, Ŷ�

)
= �� − ��B���, � = 1, · · · , L .

We proceed to show that the achievable rate region as given
by (23) with a Gaussian

∏L
�=1 p(ŷ�|y�) ∼ CN (Y�, Q�), where

Q� = B−1
� −��, is as large as that of (2) under Gaussian input.
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First, note that

I
(

Y�; Ŷ�|XK
)

= log |(πe)��| − h
(

Y�|XK, Ŷ�

)

≥ log |(πe)��| − log
∣
∣
∣(πe) cov

(
Y�|XK, Ŷ�

)∣∣
∣

= log

∣∣
∣�−1

�

∣∣
∣

∣
∣∣�−1

� − B�

∣
∣∣
, � = 1, · · · , L, (33)

where we use the fact that Gaussian distribution maximizes
differential entropy.

Moreover, we have

I
(

XT ; ŶSc |XT c

)
= h (XT ) − h

(
XT |XT c , ŶSc

)

≤ log |KT | − log
∣
∣∣J−1
(

XT |XT c , ŶSc

)∣∣∣ ,

where the inequality is due to Lemma 1. Since

YSc = HSc,T XT + HSc,T c XT c + ZSc ,

it follows from the MMSE estimation of Gaussian random
vectors that

XT = E [XT |XT c , YSc ] + NT ,Sc

=
∑

�∈Sc

GT ,�

(
Y� − H�,T c XT c

)+ NT ,Sc ,

where

GT ,� =
⎛

⎝K−1
T +
∑

j∈Sc

H†
j,T �−1

j H j,T

⎞

⎠

−1

H†
�,T �−1

� ,

and NT ,Sc ∼ CN (0,�N) with covariance matrix

�N =
(

K−1
T +
∑

�∈Sc

H†
�,T �−1

� H�,T

)−1

. (34)

Here E [XT |XT c , YSc ] is the MMSE estimator of XT from
XT c , YSc . The error in estimation is NT ,Sc , and the MMSE
matrix is �N.

By the matrix complementary identity between Fisher
information matrix and MMSE in Lemma 2, we have

J
(

XT |XT c , ŶSc

)

= �−1
N

− �−1
N cov

(
∑

�∈Sc

GT ,�(Y� − H�,T c XT c)|XK, ŶSc

)

�−1
N

= �−1
N − �−1

N cov

(
∑

�∈Sc

GT ,�Y�|XK, ŶSc

)

�−1
N

= �−1
N − �−1

N

[
∑

�∈Sc

GT ,� cov
(

Y�|XK, Ŷ�

)
G†
T ,�

]

�−1
N

= �−1
N −
∑

�∈Sc

H†
�,T

(
�−1

� − B�

)
H�,T

= K−1
T +
∑

�∈Sc

H†
�,T B�H�,T .

Therefore,

I
(

XT ; ŶSc |XT c

)
≤ log

∣∣
∣J(XT |XT c , ŶSc)

∣∣
∣

∣
∣∣K−1

T

∣
∣∣

= log

∣
∣
∣K−1

T +∑�∈Sc H†
�,T B�H�,T

∣
∣
∣

∣
∣
∣K−1

T

∣
∣
∣

(35)

for all T ⊆ K and S ⊆ L. Combining (33) and (35),
we conclude that RG

J D,G I n as derived from (23) is as large
as R∗

J D,G I n. Therefore, RG
J D,G I n = R∗

J D,G I n.

D. Optimization of Gaussian Input and Gaussian
Quantization Noise Covariance Matrices

This section addresses the numerical optimization of the
Gaussian input and quantization noise covariance matrices for
uplink MIMO C-RAN under given fronthaul capacity con-
straints. First, we note that even when restricting to Gaussian
input and Gaussian quantization, the joint optimization of
input and quantization noise covariance matrices is still a
challenging problem for the uplink MIMO C-RAN. However,
if we fix the quantization noise covariance, then the input
optimization reduces to that of optimizing a conventional
Gaussian multiple-access channel. In particular, the problem
of maximizing the weighted sum rate can be formulated as a
convex optimization, which can be readily solved [32].

Conversely, if we fix the transmit covariance matrix,
the optimization of quantization noise covariance can in some
cases be formulated as convex optimization. The key enabling
fact is the reparameterization in term of B� (22), instead of
direct optimization over Q�. Consider first the case of joint
decoding. Using (23) under the fixed C� for � = 1, . . . , L,
the weighted sum rate maximization problem can be formu-
lated over {Rk, B�} as follows:

max
Rk ,B�

K∑

k=1

μk Rk

s.t.
∑

k∈T
Rk ≤ log

∣
∣∣
∑

�∈Sc H†
�,T B�H�,T + K−1

T

∣
∣∣

∣
∣
∣K−1

T

∣
∣
∣

+
∑

�∈S

⎡

⎣C� − log

∣
∣
∣�−1

�

∣
∣
∣

∣
∣
∣�−1

� − B�

∣
∣
∣

⎤

⎦ , ∀ T ⊆ K, ∀S ⊆ L,

0  B�  �−1
� , ∀ � ∈ L, (36)

where μk represents the weight associated with user k, which
is typically determined from upper layer protocols. The key
observation is that the above problem is convex in {Rk, B�}.
However, we also note that because of joint decoding, the num-
ber of constraints is exponential in the size of the network.
Consequently, the above optimization problem can only be
solved for small networks in practice.

Note that the above formulation considers the optimization
of instantaneous achievable rates Rk under instantaneous fron-
thaul capacity constraints C� in a fixed time slot. The solution
obtained, however, also applies to the more general case
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of optimizing the weighted sum rates under weighted sum
fronthaul constraint (e.g.,

∑L
�=1 ν�C� ≤ C). This is because if

we consider a slightly more general formulation of optimizing
an objective of

max
Rk ,B�,C�

K∑

k=1

μk Rk − γ

L∑

�=1

ν�C� (37)

under the same constraints as in (36) and
∑L

�=1 ν�C� ≤ C .
Such an optimization problem is convex, so time-sharing is
not needed. For this reason, the rest of this section considers
the formulation with instantaneous rates only.

We now consider the weighted sum-rate maximization
problem for the case of successive decoding of the
quantization codewords followed by the user messages.
However, the direct characterization of successive decoding
rate (25)-(26) does not give rise to a convex formulation.
Nevertheless, for the special case of maximizing the sum
rate (i.e., with μ1 = · · · = μK = 1), using Theorem 2, which
shows that successive decoding achieves the same maximum
sum rate as joint decoding, the sum-rate maximization
problem with successive decoding can be equivalently
formulated as follows:

Theorem 5: For the uplink C-RAN model with individual
fronthaul capacity constraint C� as shown in Fig. 1, the sum
rate maximization problem under successive decoding can be
formulated as the following convex problem:

max
R,B�

R

s.t. R ≤
∑

�∈S

⎡

⎣C� − log

∣
∣
∣�−1

�

∣
∣
∣

∣
∣
∣�−1

� − B�

∣
∣
∣

⎤

⎦

+ log

∣∣
∣
∑

�∈Sc H†
�,T B�H�,T + K−1

K

∣∣
∣

∣
∣∣K−1

K

∣
∣∣

, ∀S ⊆ L,

0  B�  �−1
� , ∀ � ∈ L. (38)

Further, if the fronthaul links are subject to a sum capacity
constraint of C , the sum rate maximization problem can be
formulated as the following convex problem:

max
R,B�

R

s.t. R ≤ log

∣
∣
∣
∑L

�=1 H†
�,KB�H�,K + K−1

K

∣
∣
∣

∣
∣
∣K−1

K

∣
∣
∣

,

R +
L∑

�=1

log

∣
∣
∣�−1

�

∣
∣
∣

∣∣
∣�−1

� − B�

∣∣
∣

≤ C,

0  B�  �−1
� , ∀ � ∈ L. (39)

We remark that the formulation for uplink C-RAN with
individual fronthaul capacities (38) has exponential number
of constraints, because the CP in effect needs to search
over L! different decoding orders of quantization codewords
at the BSs. In practical implementation, a heuristic method
can be used to determine the decoding orders of quantization

codewords for avoiding the exponential search [24], [33].
Alternatively, if the C-RAN has a sum fronthaul constraint,
then the number of constraints is linear in network size,
because we only need to consider the case of S = L and
S = ∅ in (38). Consequently, the resulting quantization
noise covariance optimization problem (39) can be solved
in polynomial time. Note that convexity is a key advantage
of the above problem formulations as compared to previous
approaches in the literature (e.g. [21], [22]) that parameterize
the optimization problem over the quantization noise covari-
ance Q�, which leads to a nonconvex formulation.

We emphasize the importance of Gaussian input for the
convex formulation in Theorem 5. Suppose that both input sig-
nal XK and compressed signal Ŷ� are discrete random vectors
with finite alphabet. For fixed input distribution, the sum-rate
maximization problem under the sum fronthaul constraint can
be written as

max
p(ŷ�|y�)

I
(

XK; ŶL
)

,

s.t. I
(

YL; ŶL
)

≤ C,

p
(
ŷ�|y�

) ≥ 0,
∑

ŷ�

p
(
ŷ�|y�

) = 1, ∀ � ∈ L. (40)

The above problem can be thought as a variant of the infor-
mation bottleneck method [19], which can be solved by a gen-
eralized Blahut-Arimoto (BA) algorithm [34], [35]. However,
due to the non-convex nature of problem (40), the generalized
BA algorithm can only converge to a local optimum.

V. CONCLUSION

This paper provides a number of information theoretical
results on the optimal compress-and-forward scheme for the
uplink MIMO C-RAN model, where the BSs are connected to
a CP through noiseless fronthaul links of limited capacities.
It is shown that the generalized successive decoding scheme,
which allows arbitrary decoding orders between quantization
and user message codewords, can achieve the same rate region
as joint decoding under a sum fronthaul constraint. Moreover,
the practical successive decoding of the quantization code-
words followed by the user messages is shown to achieve the
same maximum sum rate as joint decoding under individual
fronthaul constraints. In addition, if the input distribution is
assumed to be Gaussian, it is shown that Gaussian quantiza-
tion maximizes the achievable rate region of joint decoding.
With Gaussian input signaling, the optimization of Gaussian
quantization for maximizing the weighted sum rate under
joint decoding and the sum rate under successive decoding
can be cast as convex optimization problems, which facili-
tates efficient numerical solution. Finally, Gaussian input and
Gaussian quantization achieve the capacity region of the uplink
C-RAN model to within constant gap. Collectively, these
results provide justifications for the practical choice of using
Gaussian-like input signals at the user terminals, Gaussian-like
quantization at the relaying BSs, and successive decoding of
quantization codewords followed by user messages at the CP
for implementing uplink MIMO C-RAN.
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VI. APPENDIX A
OPTIMALITY OF GENERALIZED SUCCESSIVE DECODING

In this appendix, we prove Theorem 1, which states the
equivalence between generalized successive decoding and joint
decoding under a sum-capacity fronthaul constraint. We begin
by introducing an outer bound for the achievable rate region
of joint decoding under a sum fronthaul constraint. Under
the sum fronthaul capacity constraint, define the rate-fronthaul
region for joint decoding Po

J D,s as the closure of the convex
hull of all (R1, R2, . . . , RK , C) satisfying
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

k∈T
Rk < min

{
C −
∑

�∈L
I
(

Y�; Ŷ�|XK
)

,

I
(

XT ; ŶL|XT c

)}
, ∀ T ⊆ K,

C >
∑

�∈L
I
(

Y�; Ŷ�|XK
)

,

(41)

for some product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�).
Under fixed sum fronthaul constraint C , define the region
Ro

J D,s as follows

Ro
J D,s =

{
(R1, . . . , RK ) : (R1, · · · , RK , C) ∈ Po

J D,s

}
.

(42)

Note that the rate region Ro
J D,s is an outer bound for joint

decoding rate region (10) because only the constraints corre-
sponding to S = ∅ and S = L are included. These constraints
turn out to be the only active ones under the sum fronthaul
constraint

∑L
�=1 C� ≤ C and C� ≥ 0.

Under the sum fronthaul constraint, the generalized suc-
cessive decoding region PGS D,s(π) for decoding order π

can be derived from (2) by letting
∑L

�=1 C� = C . More
specifically, PGS D,s(π) is the closure of the convex hull of
all (R1, R2, . . . , RK , C) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

Rk < I
(

Xk; ŶJXk
|XIXk

)
, ∀ k ∈ K,

C >

L∑

�=1

I
(

Y�; Ŷ�|ŶJY�
, XIY�

)
,

(43)

for some product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�),
where IXk , IY� are the indices of user messages that are
decoded before Xk and Y� under the permutation π , and JXk ,
JY� are the indices of the quantization codewords that are
decoded before Xk and Y� under decoding order π . Define
P∗

GS D,s to be the closure of the convex hull of all PGS D,s(π)’s

over decoding order π’s, i.e., P∗
GS D,s = co

(
⋃

π
PGS D,s(π)

)
.

We say a point (R1, . . . , RK , C) is dominated by a point in
P∗

GS D,S if there exists some (R′
1, . . . , R′

K , C ′) in P∗
GS D,s for

which Rk ≤ R′
k for k = 1, 2, . . . , K , and C ≥ C ′.

Given the definitions of R∗
GS D,s, R∗

J D,s and Ro
J D,s, it is

easy to see that R∗
GS D,s ⊆ R∗

J D,s ⊆ Ro
J D,s. To show

R∗
GS D,s = R∗

J D,s, it suffices to show Ro
J D,s ⊆ R∗

GS D,s, which
is equivalent to showing that if a point (R1, R2, . . . , RK , C) ∈
Po

J D,s, then the same point (R1, R2, . . . , RK , C) ∈ P∗
GS D,s

also. To show this, it suffices to show that for any fixed

product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�) and fixed C ,
each extreme point (R1, . . . , RK , C) as defined by (41) is
dominated by a point in P∗

GS D,s with the average sum
fronthaul capacity requirement at most C .

To this end, define a set function f : 2K → R as follows:

f (T ) := min

{

C −
∑

�∈L
I (Y�; Ŷ�|XK), I

(
XT ; ŶL|XT c

)
}

,

for each T ⊆ K. It can be verified that the function f is a sub-
modular function (Appendix B, Lemma 3). By construction,
(R1, R2, . . . , RK ) as defined by (42) satisfies

∑

k∈T
Rk ≤ f (T ) ,

which is a submodular polyhedron associated with f .
It follows by basic results in submodular optimization

(Appendix VI, Proposition 6) that, for a linear ordering
i1 ≺ i2 ≺ · · · ≺ iK on the set K, an extreme point of R∗

J D,s
can be computed as follows

R̃i j = f
({i1, . . . , i j }

)− f
({i1, . . . , i j−1}

)
.

Furthermore, the extreme points of Ro
J D,s can be enumerated

over all the orderings of K. Each ordering of K is analyzed
in the same manner, hence for notational simplicity we only
consider the natural ordering i j = j in the following proof.

By construction,

R̃ j = min

{

C −
∑

�∈L
I (Y�; Ŷ�|XK), I

(
X j

1; ŶL|XK
j+1

)
}

− min

{

C −
∑

�∈L
I (Y�; Ŷ�|XK), I

(
X j−1

1 ; ŶL|XK
j

)
}

.

(44)

Due to the fact that I
(

X j
1; ŶL|XK

j+1

)
≥ I
(

X j−1
1 ; ŶL|XK

j

)
,

for some product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�),
equation (44) can yield two different results. Case 1:
the first term C − ∑�∈L I (Y�; Ŷ�|XK) in the minima
in equation (44) is not active for any j ; Case 2: the term
C −∑�∈L I (Y�; Ŷ�|XK) is active starting with some index j .

• Case 1 holds if C ≥ I
(

XK; ŶL
)

+ ∑
�∈L

I (Y�; Ŷ�|XK).

In this case the resulting extreme point r1
J D =

(R̃1, R̃2, . . . , R̃K , C) satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R̃ j = I
(

X j ; ŶL|XK
j+1

)
, for j = 1, 2, . . . , K − 1,

R̃K = I
(

XK ; ŶL
)

,

C = I
(

XK; ŶL
)

+ ∑
�∈L

I
(

Y�; Ŷ�|XK
)

.

Consider successive decoding with the decoding order
ŶL → XK → · · · → X1. The extreme point
(R∗

1 , . . . , R∗
K , C∗) ∈ P∗

GS D,s corresponding to this decod-
ing order is
⎧
⎪⎪⎨

⎪⎪⎩

R̃∗
j = I
(

X j ; ŶL|XK
j+1

)
, for j = 1, 2, . . . , K − 1,

R̃∗
K = I

(
XK ; ŶL

)
,

C∗ = I (YL; ŶL).
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Following the Markov chain

Ŷi ↔ Yi ↔ XK ↔ Y j ↔ Ŷ j , ∀ i �= j,

it can be shown that
∑

�∈L
I (Y�; Ŷ�|XK) + I

(
XK; ŶL

)
= I (YL; ŶL).

Clearly, r1
J D can be achieved by the decoding order of

ŶL → XK → · · · → X1. Thus, r1
J D is dominated by a

point in P∗
GS D,s.

• Case 2 holds if C ≤ I
(

XK; ŶL
)

+ ∑
�∈L

I (Y�; Ŷ�|XK).

We let Xi
j = ∅ for i < j , and assume that

I
(

X j−1
1 ; ŶL|XK

j

)
≤ C −

∑

�∈L
I (Y�; Ŷ�|XK)

and

C −
∑

�∈L
I (Y�; Ŷ�|XK) ≤ I

(
X j

1; ŶL|XK
j+1

)

for some 1 ≤ j ≤ K . The resulting extreme point r2
J D =

(R̃1, R̃2, . . . , R̃K , C) satisfies
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃i = I
(

Xi ; ŶL|XK
i+1

)
, for i < j,

R̃i =
[

C−∑
�∈L

I (Y�; Ŷ�|XK)− I
(

X j−1
1 ; ŶL|XK

i

)
]+

,

for i = j,

R̃i = 0, for i > j,

C = I
(

X j
1; ŶL|XK

j+1

)
+ ∑

�∈L
I (Y�; Ŷ�|XK),

where [·]+ means max{·, 0}. Note that users with index
i > j are inactive, and are essentially removed from
the network. In this case, the rate-fronthaul tuple does
not correspond to a specific corner point obtained with a
specific generalized successive decoding order, but that it
lies on the convex-hull of two corner points of two dif-
ferent generalized successive decoding orders. To obtain
a visualization on Case 2, the rate-fronthaul region for a
two-user C-RAN model under a fixed joint distribution
p
(
x1, x2, y1, y2, ŷ1, ŷ2

)
is illustrated in Fig. 2. In the

case of K = j = 2, it is shown that the rate-
fronthaul tuple r2

J D lies on the convex-hull of two corner
points r(1) and r(2).
To prove the statement mathematically, we consider
generalized successive decoding with the following two
different decoding orders: (i) Decoding order 1 satisfies

XK → . . . → X j+1 → ŶL → X j → . . . → X1.

The extreme point r(1)
GS D = (R(1)

1 , . . . , R(1)
K , C(1)) of

P∗
GS D,s corresponding to Decoding order 1 satisfies
⎧
⎪⎪⎨

⎪⎪⎩

R(1)
i = I

(
Xi ; ŶL|XK

i+1

)
, for i ≤ j,

R(1)
i = 0, for i > j,

C(1) = I
(

YL; ŶL|XK
j+1

)
,

Fig. 2. An illustration of the rate-fronthaul tuple in Case 2
in Appendix A with a two-user C-RAN model under a fixed joint distribution
p
(
x1, x2, y1, y2, ŷ1, ŷ2

)
.

where C(1) represents the required fronthaul capacity in
order to achieve the above rate tuple (R(1)

1 , . . . , R(1)
K ) with

decoding order 1.
(ii) Decoding order 2 is

XK → . . . → X j → ŶL → X j−1 → . . . → X1.

The extreme point r(2)
GS D = (R(2)

1 , . . . , R(2)
K , C(2))

of P∗
GS D,s corresponding to Decoding order 2 satisfies
⎧
⎪⎪⎨

⎪⎪⎩

R(2)
i = I

(
Xi ; ŶL|XK

i+1

)
, for i < j,

R(2)
i = 0, for i ≥ j,

C(2) = I
(

YL; ŶL|XK
j

)
,

where C(2) represents the required fronthaul capacity in
order to achieve the above rate tuple (R(2)

1 , . . . , R(2)
K )

with decoding order 2. Observe that the rate tuples

(R(1)
1 , . . . , R(1)

K ) and (R(2)
1 , . . . , R(2)

K ) given by above two
decoding orders different at only the j th component,
where R(1)

j = I
(

X j ; ŶL|XK
j+1

)
and R(2)

j = 0 and

R(1)
i = R(2)

i = R̃i for all i < j . Now choose a parameter
θ such that

θ =
C − ∑

�∈L
I (Y�; Ŷ�|XK) − I

(
X j−1

1 ; ŶL|XK
j

)

I
(

X j ; ŶL|XK
j+1

) .

(45)
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Following the Markov chain XK ↔ YL ↔ ŶL, we have
the following identity,

1 − θ =
I
(

YL; ŶL|XK
j+1

)
− C

I
(

X j ; ŶL|XK
j+1

) .

Consider the following point: rθ
GS D = θr(1)

GS D +
(1−θ)r(2)

GS D, which is in P∗
GS D,s. The corresponding sum

fronthaul requirement is given by

θC(1) + (1 − θ)C(2)

= θ I
(

YL; ŶL|XK
j+1

)
+ (1 − θ)I

(
YL; ŶL|XK

j

)

= C ×
I
(

YL; ŶL|XK
j+1

)
− I
(

YL; ŶL|XK
j

)

I
(

X j ; ŶL|XK
j+1

)

+
I
(

YL; ŶL|XK
j+1

)

I
(

X j ; ŶL|XK
j+1

) ×
[

I
(

YL; ŶL|XK
j

)

− I
(

YL; ŶL|XK
1

)
− I
(

X j−1
1 ; ŶL|XK

j

)]

(c)= C ×
I
(

YL; ŶL|XK
j+1

)
− I
(

YL; ŶL|XK
j

)

I
(

X j ; ŶL|XK
j+1

)

+
I
(

YL; ŶL|XK
j+1

)

I
(

X j ; ŶL|XK
j+1

) ×
[

I
(

X j−1
1 , YL; ŶL|XK

j

)

− I
(

YL; ŶL|XK
1

)
− I
(

X j−1
1 ; ŶL|XK

j

)]

(d)≤ C ×
I
(

X j , YL; ŶL|XK
j+1

)
− I
(

YL; ŶL|XK
j

)

I
(

X j ; ŶL|XK
j+1

)

= C, (46)

where the equality (c) follows from the fact that
I
(

X j−1
1 , YL; ŶL|XK

j

)
= I

(
YL; ŶL|XK

j

)
due to

Markov chain XK ↔ YL ↔ ŶL, and inequality
(d) follows from the fact that I

(
YL; ŶL|XK

j+1

)
≤

I
(

X j , YL; ŶL|XK
j+1

)
. Thus, we have that r2

J D is domi-

nated by some point lying on line segment between r(1)
GS D

and r(2)
GS D, which lies in P∗

GS D,s.

Therefore, for every extreme point (R̃1, . . . , R̃K ) of Ro
J D,

the point (R̃1, . . . , R̃K , C) lies in P∗
GS D,s. This completes the

proof.
APPENDIX B

SUBMODULAR FUNCTIONS

In this appendix, we review some basic results in submod-
ular optimization used proving Theorem 1 and Theorem 2.
We tailor our statements toward submodularity and supermod-
ularity, which are used in the proofs.

We begin with the definition of submodular function.
Definition 2: Let D = {1, . . . , n} be a finite set. A set

function f : 2D → R is submodular if for all S,T ⊆ D,

f (S) + f (T ) ≥ f (S ∪ T ) + f (S ∩ T ). (47)

Algorithm 1 Greedy Algorithm for Submodular Polyhedron
1: comment: Returns extreme point (v1, . . . , vn) of P( f )

with the ordering ≺.
2: for j = 1, . . . , n do
3: Set v j = f

({i1, i2, . . . , i j }
)− f
({i1, i2, . . . , i j−1}

)
.

4: end for
5: return (v1, . . . , vn)

Definition 3: Let E = {1, . . . , m} be a finite set. A set
function g : 2E → R is supermodular if for all S,T ⊆ E ,

g(S) + g(T ) ≤ g(S ∪ T ) + g(S ∩ T ). (48)

If the function f is submodular, we call a polyhedron
defined by

P( f ) =
{

(x1, . . . , xn) ∈ R
n :
∑

i∈S
xi ≤ f (S), ∀ S ⊆ D

}

(49)

the submodular polyhedron associated with the submodular
function f . Similarly, we define the supermodular polyhedron
P(g) to be the set of (x1, . . . , xn) ∈ R

n satisfying
∑

i∈T
xi ≥ g(T ), ∀ T ⊆ E . (50)

We say a point in P( f ) is an extreme point if it cannot be
expressed as a convex combination of the other two points
in P( f ).

One important property of submodular polyhedron is that all
the extreme points can be enumerated through solving a linear
optimization. The following proposition provides an algorithm
that enumerates the extreme points of P( f ).

Proposition 6 ([36], [37]): For a linear ordering i1 ≺ i2 ≺
· · · ≺ in of the elements in D, Algorithm 1 returns an extreme
point (v1, . . . , vn) of P( f ). Moreover, all extreme points of
P( f ) can be enumerated by considering all linear orderings
of the elements of D.

Proposition 6 is the key tool we employ to prove Theorem 1
and Theorem 2. In order to apply this proposition, we require
the following lemmas,

Lemma 3: For any joint distribution
∏K

k=1 p (xk)∏L
�=1 p
(
y�|xK

1

) ∏L
�=1 p(ŷ�|y�) and fixed C ∈ R, the set

function f : 2K → R defined as follows

f (T ) := min

{

C −
∑

�∈L
I (Y�; Ŷ�|XK), I

(
XT ; ŶL|XT c

)
}

is submodular.
Proof: Define a set function f ′ (T ) = I

(
XT ; ŶL|XT c

)
.

By definition, it can be verified that function f ′ is
submodular [38]. Under fixed sum fronthaul capacity C
and conditional distribution

∏L
�=1 pŶ�|Y�

, the expression

C − ∑�∈L I (Y�; Ŷ�|XK) is a constant. Let C ′ =
C −∑�∈L I (Y�; Ŷ�|XK). Now the problem reduces to show
that f (T ) = min

{
C ′, f ′ (T )

)
is submodular.
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Next, observe that f ′ is monotonically increasing,
i.e., if S ⊂ T , then f ′(S) ≤ f ′(T ). Thus, fixing S,T ⊆ K,
we can assume without loss of generality that

f ′(S ∩ T ) ≤ f ′(S) ≤ f ′(T ) ≤ f ′(S ∪ T )

If C ′ ≤ f ′(S∩T ), then f (S) = f (T ) = f (S∩T ) = f (T ) ≤
f ′(S ∪ T ) = C ′. Clearly, f is then submodular. On the other
hand, if C ′ ≥ f ′(S ∪T ), then f (S) = f ′(S), f (T ) = f ′(T ),
f (S ∩ T ) = f ′(S ∩ T ), and f (S ∪ T ) = f ′(S ∪ T ), f is
also submodular. Thus, it suffices to check the following three
cases:

• Case 1: f ′(S ∩ T ) ≤ C ′ ≤ f ′(S) ≤ f ′(T ) ≤ f ′(S ∪ T ).
By definition of function f , we have

f (S) + f (T ) ≥ C ′ + f ′(S ∩ T ) = f (S ∪ T ) + f (S ∩ T ).

• Case 2: f ′(S ∩ T ) ≤ f ′(S) ≤ C ′ ≤ f ′(T ) ≤ f ′(S ∪ T ).
Since f ′ is monotonically increasing, we have

f (S) + f (T ) = f ′(S) + C ′ ≥ f ′(S ∩ T ) + f (S ∪ T )

= f (S ∩ T ) + f (S ∪ T ).

• Case 3: f ′(S ∩ T ) ≤ f ′(S) ≤ f ′(T ) ≤ C ′ ≤ f ′(S ∪ T ).
In this case, the submodularity of f ′ and the fact
of f ′ ≤ f imply that

f (S) + f (T ) = f ′(S) + f ′(T )

≥ f ′(S ∩ T ) + f ′(S ∪ T )

≥ f (S ∩ T ) + f (S ∪ T ).

Hence, f = min{C ′, f ′} is submodular, which completes the
proof of Lemma 3.

Lemma 4: For any joint distribution
∏K

k=1 p (xk)∏L
�=1 p
(
y�|xK

1

) ∏L
�=1 p(ŷ�|y�) and fixed R ∈ R, define

the set function g : 2L → R as:

g (S) := R +
∑

�∈S
I
(

Y�; Ŷ�|XK
)

− I
(

XK; ŶSc

)
,

and the corresponding non-negative set function g+ : 2L →
R+ as g+ = max{g, 0}. The functions g and g+ are
supermodular.

Proof: We first prove that the set function g′ (T ) =
I
(

XK; ŶT
)

is submodular. To this end, we evaluate

g′ (T ∩ S) + g′ (T ∪ S)

= I
(

XK; ŶT ∪S
)

+ I
(

XK; ŶT ∩S
)

= I
(

XK; ŶS , ŶSc∩T
)

+ I
(

XK; ŶT ∩S
)

= g′ (S) + g′ (T ) + I
(

XK; ŶSc∩T |ŶS
)

− I
(

XK; ŶSc∩T |ŶT ∩S
)

.

Furthermore,

I
(

XK; ŶSc∩T |ŶS
)

− I
(

XK; ŶSc∩T |ŶT ∩S
)

= h
(

ŶSc∩T |ŶS
)

− h
(

ŶSc∩T |ŶS , XK
)

− h
(

ŶSc∩T |ŶT ∩S
)

+ h
(

ŶSc∩T |ŶT ∩S , XK
)

= h
(

ŶSc∩T |ŶS
)

− h
(

ŶSc∩T |ŶS∩T

)

≤ 0.

Therefore, g′ (T ∩ S)+g′ (T ∪ S) ≤ g′ (S)+g′ (T ), which
proves that g′ is submodular.

In the following, we prove that g is supermodular. Evaluate
g(S) + g(T ) as

g(S) + g(T )

= 2R +
∑

�∈S
I
(

Y�; Ŷ�|XK
)

+
∑

�∈T
I
(

Y�; Ŷ�|XK
)

− I
(

XK; ŶSc

)
− I
(

XK; ŶT c

)

(e)≤ 2R +
∑

�∈S∪T
I
(

Y�; Ŷ�|XK
)

+
∑

�∈S∩T
I
(

Y�; Ŷ�|XK
)

− I
(

XK; Ŷ(S∩T )c

)
− I
(

XK; Ŷ(S∪T )c

)

= g(S ∩ T ) + g(S ∪ T ),

where inequality (e) follows from the fact that g′ (T ) =
I
(

XK; ŶT
)

is a submodular function.
Therefore, we show that g is supermodular. Following the

result of [28, Lemma 6], it can be shown that g+ = max{g, 0}
is also supermodular.

APPENDIX C
OPTIMALITY OF SUCCESSIVE DECODING FOR

MAXIMIZING SUM RATE

Similar to the proof of Theorem 1, Theorem 2 can also
be proven using submodular optimization. In the following,
we consider the region (R, C1, . . . , CL), and prove that joint
decoding and successive decoding achieve the same maximum
rate using the properties of submodular optimization.

Definition 4: Define Ps
J D to be the closure of the convex

hull of all (R, C1, . . . , CL ) satisfying

R <
∑

�∈S

[
C� − I

(
Y�; Ŷ�|XK

)]
+ I
(

XK; ŶSc

)
, ∀ S ⊆ L,

(51)

for some product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�).
Definition 5: Define Ps

S D to be the closure of the convex
hull all (R, C1, . . . , CL) satisfying

⎧
⎪⎨

⎪⎩

R < I
(

XK; ŶL
)

,
∑

�∈S
C� > I

(
YS; ŶS |ŶSc

)
, ∀ S ⊆ L,

(52)

for some product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�).
Note that Ps

J D represents the sum-rate and
fronthaul-capacity region of joint decoding. All the partial
sums over S in (51) can be strictly attained with equality
depending on the values of the fronthaul capacities C� for
� = 1, . . . , L and the sum rate R. Similarly, Ps

S D corresponds
to the region of successive decoding. For fixed product
distribution

∏K
k=1 p (xk)

∏L
�=1 p(ŷ�|y�), we say a point

(R, C1, . . . , CL) is dominated by a point (R′, C ′
1, . . . , C ′

L) in
Ps

S D if C ′
� ≤ C� for � = 1, . . . , L and R′ ≥ R.

Clearly, the maximum sum rate achieved by joint decoding
is always larger or equal to that achieved by successive
decoding, i.e., R∗

J D,SU M ≥ R∗
S D,SU M. To show R∗

J D,SU M =
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R∗
S D,SU M, it remains to show that R∗

J D,SU M ≤ R∗
S D,SU M.

For any given product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�)
and joint decoding sum rate RJ D, define PC ⊂ R

L+ to be the
set of (C1, . . . , CL) such that

∑

�∈S
C� ≥
[

RJ D +
∑

�∈S
I
(

Y�; Ŷ�|XK
)

− I
(

XK; ŶSc

)
]+

,

(53)

for all S ⊆ L. Now, to show R∗
J D,SU M ≤ R∗

S D,SU M , it suffices
to show that each extreme point of (RJ D,PC) is dominated
by a point in Ps

S D that achieves a sum rate greater or equal to
the joint decoding sum rate RJ D.

To this end, define a set function g : 2L → R as follows:

g (S) := RJ D +
∑

�∈S
I
(

Y�; Ŷ�|XK
)

− I
(

XK; ŶSc

)
,

for each S ⊆ L. It can be verified that the function g+ (S) =
max {g (S) , 0} is a supermodular function (see Appendix B,
Lemma 4). By construction, PC is equal to the set of
(C1, R2, . . . , CL) satisfying

∑

�∈S
C� ≥ g+ (S) , ∀ S ⊆ L.

Following the results in submodular optimization
(Appendix B, Proposition 6), we have that for a linear
ordering i1 ≺ i2 ≺ · · · ≺ iK on the set K, an extreme point
of PC can be computed as follows

C̃i j = g+ ({i1, . . . , i j }
)− g+ ({i1, . . . , i j−1}

)
.

All the L! extreme points of PC can be analyzed in the same
manner. For notational simplicity we only consider the natural
ordering i j = j in the following proof.

By construction,

C̃ j =
⎡

⎣RJ D +
j∑

�=1

I
(

Y�; Ŷ�|XK
)

− I
(

XK; ŶL
j+1

)
⎤

⎦

+

−
⎡

⎣RJ D +
j−1∑

�=1

I
(

Y�; Ŷ�|XK
)

− I
(

XK; ŶL
j

)
⎤

⎦

+
.

Let j be the first index for which g ({1, . . . , j}) > 0. Then,
by construction,

C̃k = I
(

XK; Ŷk|ŶL
k+1

)
+ I
(

Yk; Ŷk|XK
)

= I
(

Yk; Ŷk|ŶL
k+1

)

for all k > j , where the Markov chain Ŷi ↔ Yi ↔ XK ↔
Y j ↔ Ŷ j , for i �= j , is utilized in deriving the second equality.
Clearly, all the C̃k’s are in the successive decoding region Ps

S D.
Moreover, we have g

({1, . . . , j ′}) ≤ 0 for all j ′ < j . Thus,
C̃ j can be expressed as

C̃ j = RJ D +
j∑

�=1

I
(

Y�; Ŷ�|XK
)

− I
(

XK; ŶL
j+1

)

= α I
(

Y j+1; Ŷ j+1|ŶL
j+1

)

where α ∈ [0, 1] is defined as

α =
RJ D +

j∑

�=1
I
(

Y�; Ŷ�|XK
)

− I
(

XK; ŶL
j+1

)

I
(

Y j+1; Ŷ j+1|ŶL
j+1

) .

Consider the two following successive decoding schemes:
• Scheme 1: The CP decodes quantization codewords

Ŷ j+1, . . . , ŶL first, then decodes the user message
codewords XK sequentially. Note that the BSs with
index i ≤ j are inactive, and are essentially removed
from the network. The resulting extreme point c(1) =
(R(1)

S D, C(1)
1 , . . . , C(1)

L ) of Ps
S D satisfies

⎧
⎪⎪⎨

⎪⎪⎩

C(1)
i = 0, for i ≤ j,

C(1)
i = I

(
Yi ; Ŷi |ŶL

i+1

)
, for i > j,

R(1)
S D = I

(
XK; ŶL

j+1

)
.

• Scheme 2: The CP decodes quantization codewords
Ŷ j , . . . , ŶL first, then decodes the user message code-
words XK sequentially. Note that in this scheme, the
BSs with index i < j are inactive, and are essentially
removed from the network. The resulting extreme point
c(2) = (R(2)

S D, C(2)
1 , . . . , C(2)

L ) of Ps
S D satisfies

⎧
⎪⎪⎨

⎪⎪⎩

C(2)
i = 0, for i < j,

C(2)
i = I

(
Yi ; Ŷi |ŶL

i+1

)
, for i ≥ j,

R(2)
S D = I

(
XK; ŶL

j

)
.

Since C� is defined to be the maximum long-term aver-
age throughput of fronthaul link �, the following point:
cα = (1 − α)c(1) + αc(2) lies in Ps

S D. The corresponding sum
rate RS D in cα is given by

(1 − α)R(1)
S D + αR(2)

S D

= (1 − α)I
(

XK; ŶL
j+1

)
+ α I
(

XK; ŶL
j

)

( f )=
I
(

XK; ŶL
j

)
− RJ D −

j−1∑

�=1
I
(

Y�; Ŷ�|XK
)

I
(

Y j+1; Ŷ j+1|ŶL
j+1

)

× I
(

XK; ŶL
j+1

)

+
RJ D +

j∑

�=1
I
(

Y�; Ŷ�|XK
)

− I
(

XK; ŶL
j+1

)

I
(

Y j+1; Ŷ j+1|ŶL
j+1

)

× I
(

XK; ŶL
j

)

≥
RJ D ×

[
I
(

XK; ŶL
j

)
− I
(

XK; ŶL
j+1

)]

I
(

Y j+1; Ŷ j+1|ŶL
j+1

)

+
I
(

Y j ; Ŷ j |XK
)

× I
(

XK; ŶL
j

)

I
(

Y j+1; Ŷ j+1|ŶL
j+1

)

(g)≥ RJ D ×
I
(

XK; ŶL
j

)
− I
(

XK; ŶL
j+1

)
+ I
(

Y j ; Ŷ j |XK
)

I
(

Y j+1; Ŷ j+1|ŶL
j+1

)

= RJ D, (54)
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where the equality ( f ) follows from the fact that
I
(

XK, Y j+1; Ŷ j+1|ŶL
j+1

)
= I

(
Y j+1; Ŷ j+1|ŶL

j+1

)
,

and inequality (g) follows from the fact that RJ D ≤
I
(

XK; ŶL
j

)
.

Therefore, for every extreme point (C̃1, . . . , C̃L) of PC ,
the point (RJ D, C̃1, . . . , C̃L) is dominated by a point in Ps

S D.
This proves Theorem 2.

VII. APPENDIX D
CONSTANT-GAP RESULT FOR COMPRESS-AND-FORWARD

WITH JOINT DECODING

The idea of the proof is to compare the achievable rate of
compress-and-forward with joint decoding with the following
cut-set upper bound [6]
∑

k∈T
Rk

≤ min
S⊆L

⎧
⎨

⎩

∑

�∈S
C� + log

∣
∣
∣
∑

�∈Sc H†
�,T �−1

� H�,T + K−1
T

∣
∣
∣

∣∣
∣K−1

T

∣∣
∣

⎫
⎬

⎭

(55)

for all ∅ ⊂ T ⊆ K. In the expression of cut-set bound, the
first term represents the cut across the fronthaul links in set
S, and the second term represents the cut from the users to
the BSs in set Sc.

Recall that the rate region for joint decoding (23) under
Gaussian quantization is the set of (R1, · · · , RK ) such that

∑

k∈T
Rk <
∑

�∈S

⎡

⎣C� − log

∣
∣
∣�−1

�

∣
∣
∣

∣
∣
∣�−1

� − B�

∣
∣
∣

⎤

⎦

+ log

∣
∣∣
∑

�∈Sc H†
�,T B�H�,T + K−1

T

∣
∣∣

∣
∣
∣K−1

T

∣
∣
∣

for all ∅ ⊂ T ⊆ K and S ⊆ L, for some 0  B�  �−1
� .

We now show that if a rate tuple (R1, · · · , RK ) is within the
cut-set bound, then (R1 −η, · · · , RK −η) is in the achievable
rate region of joint decoding, where

|T |η ≤
∑

�∈S
log

∣
∣∣�−1

�

∣
∣∣

∣
∣
∣�−1

� − B�

∣
∣
∣

+ log

∣
∣
∣
∑

�∈Sc H†
�,T �−1

� H�,T + K−1
T

∣
∣
∣

∣
∣
∣
∑

�∈Sc H†
�,T B�H�,T + K−1

T

∣
∣
∣

(56)

is the gap between the cut-set bound and achievable rate of
joint decoding.

Choose quantization noise level to be at the background
noise level, i.e., Q� = ��. Then we have

B� = (�� + Q�)
−1 = 1

2
�−1

� .

Evaluating gap η with the above choice of B� gives

η ≤ |S|
|T | · N + M ≤ N L + M,

which completes the proof of Proposition 3.
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